
http://www.cambridge.org/9780521859714

This page intentionally left blank

Numerical Methods for Chemical Engineering

Suitable for a first-year graduate course, this textbook unites the applications of numerical
mathematics and scientific computing to the practice of chemical engineering. Written in
a pedagogic style, the book describes basic linear and nonlinear algebraic systems all the
way through to stochastic methods, Bayesian statistics, and parameter estimation. These
subjects are developed at a nominal level of theoretical mathematics suitable for graduate
engineers. The implementation of numerical methods in M® is integrated within
each chapter and numerous examples in chemical engineering are provided, together with a
library of corresponding M programs. Although the applications focus on chemical
engineering, the treatment of the topics should also be of interest to non-chemical engineers
and other applied scientists that work with scientific computing. This book will provide the
graduate student with the essential tools required by industry and research alike.

Supplementary material includes solutions to homework problems set in the text,
M programs and tutorial, lecture slides, and complicated derivations for the more
advanced reader. These are available online at www.cambridge.org/9780521859714.

K J B has been Assistant Professor at MIT since 2000. He has taught exten-
sively across the engineering discipline at both the undergraduate and graduate level. This
book is a result of the successful course the author devised at MIT for numerical methods
applied to chemical engineering.

Numerical Methods for
Chemical Engineering

Applications in MATLAB ®

KENNETH J . BEERS
Massachusetts Institute of Technology

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-85971-4

isbn-13 978-0-511-25650-9

© K. J. Beers 2007

2006

Information on this title: www.cambridge.org/9780521859714

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-25650-7

isbn-10 0-521-85971-9

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (EBL)

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521859714

Contents

Preface page ix

1 Linear algebra 1
Linear systems of algebraic equations 1
Review of scalar, vector, and matrix operations 3
Elimination methods for solving linear systems 10
Existence and uniqueness of solutions 23
The determinant 32
Matrix inversion 36
Matrix factorization 38
Matrix norm and rank 44
Submatrices and matrix partitions 44
Example. Modeling a separation system 45
Sparse and banded matrices 46
MATLAB summary 56
Problems 57

2 Nonlinear algebraic systems 61
Existence and uniqueness of solutions to a nonlinear algebraic equation 61
Iterative methods and the use of Taylor series 62
Newton’s method for a single equation 63
The secant method 69
Bracketing and bisection methods 70
Finding complex solutions 70
Systems of multiple nonlinear algebraic equations 71
Newton’s method for multiple nonlinear equations 72
Estimating the Jacobian and quasi-Newton methods 77
Robust reduced-step Newton method 79
The trust-region Newton method 81
Solving nonlinear algebraic systems in MATLAB 83
Example. 1-D laminar flow of a shear-thinning polymer melt 85
Homotopy 88
Example. Steady-state modeling of a condensation

polymerization reactor 89

v

vi Contents

Bifurcation analysis 94
MATLAB summary 98
Problems 99

3 Matrix eigenvalue analysis 104
Orthogonal matrices 104
A specific example of an orthogonal matrix 105
Eigenvalues and eigenvectors defined 106
Eigenvalues/eigenvectors of a 2 × 2 real matrix 107
Multiplicity and formulas for the trace and determinant 109
Eigenvalues and the existence/uniqueness properties of linear

systems 110
Estimating eigenvalues; Gershgorin’s theorem 111
Applying Gershgorin’s theorem to study the convergence of iterative

linear solvers 114
Eigenvector matrix decomposition and basis sets 117
Numerical calculation of eigenvalues and eigenvectors in MATLAB 123
Computing extremal eigenvalues 126
The QR method for computing all eigenvalues 129
Normal mode analysis 134
Relaxing the assumption of equal masses 136
Eigenvalue problems in quantum mechanics 137
Single value decomposition SVD 141
Computing the roots of a polynomial 148
MATLAB summary 149
Problems 149

4 Initial value problems 154
Initial value problems of ordinary differential equations

(ODE-IVPs) 155
Polynomial interpolation 156
Newton–Cotes integration 162
Gaussian quadrature 163
Multidimensional integrals 167
Linear ODE systems and dynamic stability 169
Overview of ODE-IVP solvers in MATLAB 176
Accuracy and stability of single-step methods 185
Stiff stability of BDF methods 192
Symplectic methods for classical mechanics 194
Differential-algebraic equation (DAE) systems 195
Parametric continuation 203
MATLAB summary 207
Problems 208

Contents vii

5 Numerical optimization 212
Local methods for unconstrained optimization problems 212
The simplex method 213
Gradient methods 213
Newton line search methods 223
Trust-region Newton method 225
Newton methods for large problems 227
Unconstrained minimizer fminunc in MATLAB 228
Example. Fitting a kinetic rate law to time-dependent data 230
Lagrangian methods for constrained optimization 231
Constrained minimizer fmincon in MATLAB 242
Optimal control 246
MATLAB summary 252
Problems 252

6 Boundary value problems 258
BVPs from conservation principles 258
Real-space vs. function-space BVP methods 260
The finite difference method applied to a 2-D BVP 260
Extending the finite difference method 264
Chemical reaction and diffusion in a spherical catalyst pellet 265
Finite differences for a convection/diffusion equation 270
Modeling a tubular chemical reactor with dispersion; treating

multiple fields 279
Numerical issues for discretized PDEs with more than two

spatial dimensions 282
The MATLAB 1-D parabolic and elliptic solver pdepe 294
Finite differences in complex geometries 294
The finite volume method 297
The finite element method (FEM) 299
FEM in MATLAB 309
Further study in the numerical solution of BVPs 311
MATLAB summary 311
Problems 312

7 Probability theory and stochastic simulation 317
The theory of probability 317
Important probability distributions 325
Random vectors and multivariate distributions 336
Brownian dynamics and stochastic differential equations

(SDEs) 338
Markov chains and processes; Monte Carlo methods 353
Genetic programming 362

viii Contents

MATLAB summary 364
Problems 365

8 Bayesian statistics and parameter estimation 372
General problem formulation 372
Example. Fitting kinetic parameters of a chemical reaction 373
Single-response linear regression 377
Linear least-squares regression 378
The Bayesian view of statistical inference 381
The least-squares method reconsidered 388
Selecting a prior for single-response data 389
Confidence intervals from the approximate posterior density 395
MCMC techniques in Bayesian analysis 403
MCMC computation of posterior predictions 404
Applying eigenvalue analysis to experimental design 412
Bayesian multi response regression 414
Analysis of composite data sets 421
Bayesian testing and model criticism 426
Further reading 431
MATLAB summary 431
Problems 432

9 Fourier analysis 436
Fourier series and transforms in one dimension 436
1-D Fourier transforms in MATLAB 445
Convolution and correlation 447
Fourier transforms in multiple dimensions 450
Scattering theory 452
MATLAB summary 459
Problems 459

References 461

Index 464

Preface

This text focuses on the application of quantitative analysis to the field of chemical engi-
neering. Modern engineering practice is becoming increasingly more quantitative, as the
use of scientific computing becomes ever more closely integrated into the daily activities
of all engineers. It is no longer the domain of a small community of specialist practitioners.
Whereas in the past, one had to hand-craft a program to solve a particular problem, carefully
husbanding the limited memory and CPU cycles available, now we can very quickly solve far
more complex problems using powerful, widely-available software. This has introduced the
need for research engineers and scientists to become computationally literate – to know the
possibilities that exist for applying computation to their problems, to understand the basic
ideas behind the most important algorithms so as to make wise choices when selecting and
tuning them, and to have the foundational knowledge necessary to navigate independently
through the literature.

This text meets this need, and is written at the level of a first-year graduate student
in chemical engineering, a consequence of its development for use at MIT for the course
10.34, “Numerical methods applied to chemical engineering.” This course was added in
2001 to the graduate core curriculum to provide all first-year Masters and Ph.D. students
with an overview of quantitative methods to augment the existing core courses in transport
phenomena, thermodynamics, and chemical reaction engineering. Care has been taken to
develop any necessary material specific to chemical engineering, so this text will prove
useful to other engineering and scientific fields as well. The reader is assumed to have taken
the traditional undergraduate classes in calculus and differential equations, and to have
some experience in computer programming, although not necessarily in A AB ®.

Even a cursory search of the holdings of most university libraries shows there to be a
great number of texts with titles that are variations of “Advanced Engineering Mathematics”
or “Numerical Methods.” So why add yet another?

I find that there are two broad classes of texts in this area. The first focuses on intro-
ducing numerical methods, applied to science and engineering, at the level of a junior
or senior undergraduate elective course. The scope is necessarily limited to rather simple
techniques and applications. The second class is targeted to research-level workers, either
higher graduate-level applied mathematicians or computationally-focused researchers in
science and engineering. These may be either advanced treatments of numerical methods
for mathematicians, or detailed discussions of scientific computing as applied to a specific
subject such as fluid mechanics.

ix

x Preface

Neither of these classes of text is appropriate for teaching the fundamentals of scientific
computing to beginning chemical engineering graduate students. Examples should be typ-
ical of those encountered in graduate-level chemical engineering research, and while the
students should gain an understanding of the basis of each method and an appreciation of
its limitations, they do not need exhaustive theory-proof treatments of convergence, error
analysis, etc. It is a challenge for beginning students to identify how their own problems
may be mapped into ones amenable to quantitative analysis; therefore, any appropriate text
should have an extensive library of worked examples, with code available to serve later as
templates. Finally, the text should address the important topics of model development and
parameter estimation. This book has been developed with these needs in mind.

This text first presents a fundamental discussion of linear algebra, to provide the necessary
foundation to read the applied mathematical literature and progress further on one’s own.
Next, a broad array of simulation techniques is presented to solve problems involving
systems of nonlinear algebraic equations, initial value problems of ordinary differential
and differential-algebraic (DAE) systems, optimizations, and boundary value problems of
ordinary and partial differential equations. A treatment of matrix eigenvalue analysis is
included, as it is fundamental to analyzing these simulation techniques.

Next follows a detailed discussion of probability theory, stochastic simulation, statistics,
and parameter estimation. As engineering becomes more focused upon the molecular level,
stochastic simulation techniques gain in importance. Particular attention is paid to Brownian
dynamics, stochastic calculus, and Monte Carlo simulation. Statistics and parameter esti-
mation are addressed from a Bayesian viewpoint, in which Monte Carlo simulation proves a
powerful and general tool for making inferences and testing hypotheses from experimental
data.

In each of these areas, topically relevant examples are given, along with A AB
www atw r s c programs that serve the students as templates when later writing
their own code. An accompanying website includes a A AB tutorial, code listings of
all examples, and a supplemental material section containing further detailed proofs and
optional topics. Of course, while significant effort has gone into testing and validating these
programs, no guarantee is provided and the reader should use them with caution.

The problems are graded by difficulty and length in each chapter. Those of grade A are
simple and can be done easily by hand or with minimal programming. Those of grade B
require more programming but are still rather straightforward extensions or implementations
of the ideas discussed in the text. Those of grade C either involve significant thinking beyond
the content presented in the text or programming effort at a level beyond that typical of the
examples and grade B problems.

The subjects covered are broad in scope, leading to the considerable (though hopefully
not excessive) length of this text. The focus is upon providing a fundamental understanding
of the underlying numerical algorithms without necessarily exhaustively treating all of their
details, variations, and complexities of use. Mastery of the material in this text should enable
first-year graduate students to perform original work in applying scientific computation to
their research, and to read the literature to progress independently to the use of more
sophisticated techniques.

Preface xi

Writing a book is a lengthy task, and one for which I have enjoyed much help and
support. Professor William Green of MIT, with whom I taught this course for one semester,
generously shared his opinions of an early draft. The teaching assistants who have worked
on the course have also been a great source of feedback and help in problem-development,
as have, of course, the students who have wrestled with intermediate drafts and my evolving
approach to teaching the subject. My Ph.D. students Jungmee Kang, Kirill Titievskiy, Erik
Allen, and Brian Stephenson have shown amazing forbearance and patience as the text
became an additional, and sometimes demanding, member of the group. Above all, I must
thank my family, and especially my supportive wife Jen, who have been tracking my progress
and eagerly awaiting the completion of the book.

1 Linear algebra

This chapter discusses the solution of sets of linear algebraic equations and defines basic
vector/matrix operations. The focus is upon elimination methods such as Gaussian elim-
ination, and the related LU and Cholesky factorizations. Following a discussion of these
methods, the existence and uniqueness of solutions are considered. Example applications
include the modeling of a separation system and the solution of a fluid mechanics boundary
value problem. The latter example introduces the need for sparse-matrix methods and the
computational advantages of banded matrices. Because linear algebraic systems have, under
well-defined conditions, a unique solution, they serve as fundamental building blocks in
more-complex algorithms. Thus, linear systems are treated here at a high level of detail, as
they will be used often throughout the remainder of the text.

Linear systems of algebraic equations

We wish to solve a system of N simultaneous linear algebraic equations for the N unknowns
x1, x2, . . . , xN , that are expressed in the general form

a11x1 + a12x2 + · · · + a1N xN = b1

a21x1 + a22x2 + · · · + a2N xN = b2 (1.1)...
aN1x1 + aN2x2 + · · · + aN N xN = bN

ai j is the constant coefficient (assumed real) that multiplies the unknown xj in equation
i. bi is the constant “right-hand-side” coefficient for equation i, also assumed real. As a
particular example, consider the system

x1 + x2 + x3 = 4
2x1 + x2 + 3x3 = 7 (1.2)
3x1 + x2 + 6x3 = 2

for which

a11 = 1 a12 = 1 a13 = 1 b1 = 4
a21 = 2 a22 = 1 a23 = 3 b2 = 7 (1.3)
a31 = 3 a32 = 1 a33 = 6 b3 = 2

1

2 1 Linear algebra

It is common to write linear systems in matrix/vector form as

Ax = b (1.4)

where

A =

a11 a12 a13 . . . a1N

a21 a22 a23 . . . a2N
...

...
...

...
aN1 aN2 aN3 . . . aN N

 x =

x1

x2
...
xN

 b =

b1

b2
...
bN

 (1.5)

Row i of A contains the values ai1, ai2, . . . , ai N that are the coefficients multiplying each
unknown x1, x2, . . . , xN in equation i. Column j contains the coefficients a1 j , a2 j , . . . , aN j

that multiply xj in each equation i = 1, 2, . . . , N . Thus, we have the following associations,

coefficients multiplying
rows ⇔ equations columns ⇔ a specific unknown

in each equation

We often write Ax = b explicitly as

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aN1 aN2 . . . aN N

x1

x2
...

xN

 =

b1

b2
...

bN

 (1.6)

For the example system (1.2),

A =

1 1 1

2 1 3
3 1 6

 b =

4

7
2

 (1.7)

In MATLAB we solve Ax = b with the single command, x = A\b. For the example (1.2),
we compute the solution with the code

A = [1 1 1; 2 1 3; 3 1 6];
b = [4; 7; 2];
x = A\b,
x =

19.0000
-7.0000
-8.0000

Thus, we are tempted to assume that, as a practical matter, we need to know little
about how to solve a linear system, as someone else has figured it out and provided
us with this handy linear solver. Actually, we shall need to understand the fundamen-
tal properties of linear systems in depth to be able to master methods for solving more
complex problems, such as sets of nonlinear algebraic equations, ordinary and partial

Review of scalar, vector, and matrix operations 3

differential equations, etc. Also, as we shall see, this solver fails for certain common
classes of very large systems of equations, and we need to know enough about linear
algebra to diagnose such situations and to propose other methods that do work in such
instances. This chapter therefore contains not only an explanation of how the MATLAB
solver is implemented, but also a detailed, fundamental discussion of the properties of linear
systems.

Our discussion is intended only to provide a foundation in linear algebra for the practice of
numerical computing, and is continued in Chapter 3 with a discussion of matrix eigenvalue
analysis. For a broader, more detailed, study of linear algebra, consult Strang (2003) or
Golub & van Loan (1996).

Review of scalar, vector, and matrix operations

As we use vector notation in our discussion of linear systems, a basic review of the concepts
of vectors and matrices is necessary.

Scalars, real and complex

Most often in basic mathematics, we work with scalars, i.e., single-valued numbers. These
may be real, such as 3, 1.4, 5/7, 3.14159 , or they may be complex, 1+ 2i, 1/2 i , where
i = √−1. The set of all real scalars is denoted �. The set of all complex scalars we call
C. For a complex number z ∈ C, we write z = a + ib, where a, b ∈ � and

a = Re{z} = real part of z
(1.8)b = Im{z} = imaginary part of z

The complex conjugate, z̄ = z∗, of z = a + ib is

z̄ = z∗ = a − ib (1.9)

Note that the product z̄z is always real and nonnegative,

z̄z = (a − ib)(a + ib) = a2 − iab + iab − i2 b2 = a2 + b2 ≥ 0 (1.10)

so that we may define the real-valued, nonnegative modulus of z, |z|, as

|z| =
√

z̄z =
√

a2 + b2 ≥ 0 (1.11)

Often, we write complex numbers in polar notation,

z = a + ib = |z|(cos θ + i sin θ) θ = tan−1(b/a) (1.12)

Using the important Euler formula, a proof of which is found in the supplemental material
found at the website that accompanies this book,

eiθ = cos θ + i sin θ (1.13)

4 1 Linear algebra

e1 1

e2 1

e 1

v

v2

v

v10

Figure 1.1 Physical interpretation of a 3-D vector.

we can write z as

z = |z|eiθ (1.14)

Vector notation and operations

We write a three-dimensional (3-D) vector v (Figure 1.1) as

v =

 v1

v2

v3

 (1.15)

v is real if v1, v2, v3 ∈ �; we then say v ∈ �3. We can easily visualize this vector in 3-
D space, defining the three coordinate basis vectors in the 1(x), 2(y), and 3(z) directions
as

e[1] =

1

0
0

 e[2] =

0

1
0

 e[3] =

0

0
1

 (1.16)

to write v ∈ �3 as

v = v1e[1] + v2e[2] + v3e[3] (1.17)

We extend this notation to define �N, the set of N-dimensional real vectors,

v =

v1

v2
...

vN

 (1.18)

where v j ∈ � for j = 1, 2, . . . , N . By writing v in this manner, we define a column vector;
however, v can also be written as a row vector,

v = [v1 v2 . . . vN] (1.19)

The difference between column and row vectors only becomes significant when we start
combining them in equations with matrices.

Review of scalar, vector, and matrix operations 5

We write v ∈ �N as an expansion in coordinate basis vectors as

v = v1e[1] + v2e[2] + · · · + vN e[N] (1.20)

where the components of e[j] are Kroenecker deltas δ jk ,

e[j] =

e[j]
1

e[j]
2

...

e[j]
N

 =

δ j1

δ j2
...

δ j N

 δ jk =

{
1, if j = k
0, if j �= k

(1.21)

Addition of two real vectors v ∈ �N , w ∈ �N is straightforward,

v+ w =

v1

v2
...

vN

+

w1

w2
...

w N

 =

v1 + w1

v2 + w2
...

vN + w N

 (1.22)

as is multiplication of a vector v ∈ �N by a real scalar c ∈ �,

cv = c

v1

v2
...

vN

 =

cv1

cv2
...

cvN

 (1.23)

For all u, v, w ∈ �N and all c1, c2 ∈ �,

u+ (v+ w) = (u+ v)+ w c(v+ u) = cv+ cu
u+ v = v+ u (c1 + c2)v = c1v+ c2v (1.24)

v+ 0 = v (c1c2)v = c1(c2v)
v+ (−v) = 0 1v = v

where the null vector 0 ∈ �N is

0 =

0
0
...
0

 (1.25)

We further add to the list of operations associated with the vectors v, w ∈ �N the dot
(inner, scalar) product,

v · w = v1w1 + v2w2 + · · · + vN w N =
N∑

k=1

vk wk (1.26)

6 1 Linear algebra

For example, for the two vectors

v =

1

2
3

 w =

 4

5
6

 (1.27)

v · w = v1 w1 + v2w2 + v3w3 = (1)(4)+ (2)(5)+ (3)(6)
(1.28)= 4+ 10+ 18 = 32

For 3-D vectors, the dot product is proportional to the product of the lengths and the cosine
of the angle between the two vectors,

v · w = |v||w | cos θ (1.29)

where the length of v is

|v| = √
v · v ≥ 0 (1.30)

Therefore, when two vectors are parallel, the magnitude of their dot product is maximal
and equals the product of their lengths, and when two vectors are perpendicular, their dot
product is zero. These ideas carry completely into N- dimensions. The length of a vector
v ∈ �N is

|v| = √
v · v =

√√√√ N∑
k=1

v2
k ≥ 0 (1.31)

If v · w = 0, v and w are said to be orthogonal, the extension of the adjective “perpendic-
ular” from �3 to �N. If v · w = 0 and |v| = |w | = 1, i.e., both vectors are normalized to
unit length, v and w are said to be orthonormal.

The formula for the length |v| of a vector v ∈ �N satisfies the more general properties
of a norm ‖v‖ of v ∈ �N . A norm ‖v‖ is a rule that assigns a real scalar, ‖v‖ ∈ �, to each
vector v ∈ �N such that for every v, w ∈ �N, and for every c ∈ �, we have

‖v‖ ≥ 0 ‖0‖ = 0

‖v‖ = 0 if and only if (iff) v = 0
(1.32)‖cv‖ = |c|‖v‖

‖v+ w‖ ≤ ‖v‖ + ‖w‖
Each norm also provides an accompanying metric, a measure of how different two vectors
are

d(v, w) = ‖v− w‖ (1.33)

In addition to the length, many other possible definitions of norm exist. The p-norm, ‖v‖p,
of v ∈ �N is

‖v‖p =
[

N∑
k=1

|vk |p
]1/p

(1.34)

Review of scalar, vector, and matrix operations 7

Table 1.1 p-norm values for the 3-D
vector (1, −2, 3)

p ‖v‖p

1 6
2

√
14 = 3.742

10 3.005
50 3.00000000009

The length of a vector is thus also the 2-norm. For v = [1−2 3], the values of the p-norm,
computed from (1.35), are presented in Table 1.1.

‖v‖p = [|1|p + | −2|p + |3|p]1/p = [(1)p + (2)p + (3)p]1/p (1.35)

We define the infinity norm as the limit of ‖v‖p as p →∞, which merely extracts from v

the largest magnitude of any component,

‖v‖∞ ≡ lim
p→∞‖v‖p = max j∈[1,N]{|v j |} (1.36)

For v = [1−2 3], ‖v‖∞ = 3.
Like scalars, vectors can be complex. We define the set of complex N-dimensional vectors

as C N , and write each component of v ∈ C N as

v j = a j + ib j a j , b j ∈ � i = √−1 (1.37)

The complex conjugate of v ∈ C N , written as v̄ or v*, is

v∗ =

a1 + ib1

a2 + ib2
...

aN + ibN

∗

=

a1 − ib1

a2 − ib2
...

aN − ibN

 (1.38)

For complex vectors v, w ∈ C N , to form the dot product v · w , we take the complex
conjugates of the first vector’s components,

v · w =
N∑

k=1

v∗k wk (1.39)

This ensures that the length of any v ∈ C is always real and nonnegative,

‖v‖2
2 =

N∑
k=1

v∗k vk =
N∑

k=1

(ak − ibk)(ak + ibk) =
N∑

k=1

(
a2

k + b2
k

) ≥ 0 (1.40)

For v, w ∈ C N , the order of the arguments is significant,

v · w = (w · v)∗ �= w · v (1.41)

8 1 Linear algebra

Matrix dimension

For a linear system Ax = b,

A =

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aN1 aN2 . . . aN N

 x =

x1

x2
...

xN

 b =

b1

b2
...

bN

 (1.42)

to have a unique solution, there must be as many equations as unknowns, and so typically
A will have an equal number N of columns and rows and thus be a square matrix. A matrix
is said to be of dimension M × N if it has M rows and N columns. We now consider some
simple matrix operations.

Multiplication of an M × N matrix A by a scalar c

cA = c

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aM1 aM2 . . . aM N

 =

ca11 ca12 . . . ca1N

ca21 ca22 . . . ca2N
...

...
...

caM1 caM2 . . . caM N

 (1.43)

Addition of an M × N matrix A with an equal-sized M × N matrix B

a11 . . . a1N

a21 . . . a2N
...

...
aM1 . . . aM N

 +

b11 . . . b1N

b21 . . . b2N
...

...
bM1 . . . bM N

=

a11 + b11 . . . a1N + b1N

a21 + b21 . . . a2N + b2N
...

...
aM1 + bM1 . . . aM N + bM N

 (1.44)

Note that A + B = B + A and that two matrices can be added only if both the number of
rows and the number of columns are equal for each matrix. Also, c(A + B) = cA + cB.

Multiplication of a square N × N matrix A with an N-dimensional
vector v

This operation must be defined as follows if we are to have equivalence between the coef-
ficient and matrix/vector representations of a linear system:

Av =

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aN1 aN2 . . . aN N

v1

v2
...

vN

 =

a11v1 + a12v2 + · · · + a1N vN

a21v1 + a22v2 + · · · + a2N vN
...

aN1v1 + aN2v2 + · · · + aN N vN

(1.45)

Review of scalar, vector, and matrix operations 9

Av is also an N-dimensional vector, whose j th component is

(Av) j = a j1v1 + a j2v2 + · · · + a j N vN =
N∑

k=1

a jkvk (1.46)

We compute (Av) j by summing a jkvk along rows of A and down the vector,

[⇒ ⇒ a jk ⇒ ⇒]

��
vk��

Multiplication of an M × N matrix A with an N-dimensional vector v

From the rule for forming Av, we see that the number of columns of A must equal the
dimension of v; however, we also can define Av when M �= N,

Av =

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aM1 aM2 . . . aM N

v1

v2
...

vN

 =

a11v1 + a12v2 + · · · + a1N vN

a21v1 + a22v2 + · · · + a2N vN
...

aM1v1 + aM2v2 + · · · + aM N vN

(1.47)

If v ∈ �N , for an M × N matrix A, Av ∈ �M . Consider the following examples:

 1 2 3 4

4 3 2 1
11 12 13 14

1
2
3
4

 =

 30

20
130

1 2 3
3 1 2
4 5 6
5 6 4

1

2
3

 =

14
11
32
29

 (1.48)

Note also that A(cv) = cAv and A(v+ w) = Av+ Aw .

Matrix transposition

We define for an M × N matrix A the transpose AT to be the N × M matrix

AT =

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aM1 aM2 . . . aM N

T

=

a11 a21 . . . aM1

a12 a22 . . . aM2
...

...
...

a1N a2N . . . aN M

 (1.49)

10 1 Linear algebra

The transpose operation is essentially a mirror reflection across the principal diagonal
a11, a22, a33, Consider the following examples:

[
1 2 3
4 5 6

]T

=

1 4

2 5
3 6

1 2 3

4 5 6
7 8 9

T

=

1 4 7

2 5 8
3 6 9

 (1.50)

If a matrix is equal to its transpose, A = AT, it is said to be symmetric. Then,

ai j =
(

AT
)

i j
= a ji ∀i, j ∈ {1, 2, . . . , N } (1.51)

Complex-valued matrices

Here we have defined operations for real matrices; however, matrices may also be complex-
valued,

C =

c11 . . . c1N

c21 . . . c2N
...

...
cM1 . . . cM N

 =

(a11 + ib21) . . . (a1N + ib1N)
(a21 + ib21) . . . (a2N + ib2N)

...
...

(aM1 + ibM1) . . . (aM N + ibM N)

 (1.52)

For the moment, we are concerned with the properties of real matrices, as applied to solving
linear systems in which the coefficients are real.

Vectors as matrices

Finally, we note that the matrix operations above can be extended to vectors by considering
a vector v ∈ �N to be an N × 1 matrix if in column form and to be a 1× N matrix if in
row form. Thus, for v, w ∈ �N , expressing vectors by default as column vectors, we write
the dot product as

v · w = vTw = [v1 · · · vN]

w1
...

w N

 = v1 w1 + · · · + vN w N (1.53)

The notation vTw for the dot product v · w is used extensively in this text.

Elimination methods for solving linear systems

With these basic definitions in hand, we now begin to consider the solution of the linear
system Ax = b, in which x, b ∈ �N and A is an N × N real matrix. We consider here
elimination methods in which we convert the linear system into an equivalent one that is
easier to solve. These methods are straightforward to implement and work generally for
any linear system that has a unique solution; however, they can be quite costly (perhaps
prohibitively so) for large systems. Later, we consider iterative methods that are more
effective for certain classes of large systems.

Elimination methods for solving linear systems 11

Gaussian elimination

We wish to develop an algorithm for solving the set of N linear equations

a11x1 + a12x2 + · · · + a1N xN = b1

a21x1 + a22x2 + · · · + a2N xN = b2
... (1.54)

aN1x1 + aN2x2 + · · · + aN N xN = bN

The basic strategy is to define a sequence of operations that converts the original system
into a simpler, but equivalent, one that may be solved easily.

Elementary row operations

We first note that we can select any two equations, say j and k, and add them to obtain
another one that is equally valid,

(a j1x1 + a j2x2 + · · · + a j N xN = b j)+ (ak1x1 + ak2x2 + · · · + ak N xN = bk)

(a j1 + ak1)x1 + (a j2 + ak2)x2 + · · · + (a j N + ak N)xN = (b j + bk)
(1.55)

If equation j is satisfied, and the equation obtained by summing j and k is satisfied, it
follows that equation k must be satisfied as well. We are thus free to replace in our system
the equation

ak1x1 + ak2x2 + · · · + ak N xN = bk (1.56)

with

(a j1 + ak1)x1 + (a j2 + ak2)x2 + · · · + (a j N + ak N)xN = (b j + bk) (1.57)

with no effect upon the solution x. Similarly, we can take any equation, say j, multiply it by
a nonzero scalar c, to obtain

ca j1x1 + ca j2x2 + · · · + ca j N xN = cb j (1.58)

which we then can substitute for equation j without affecting the solution. In general, in the
linear system

a11x1 + a12x2 + · · · + a1N xN = b1
...

a j1x1 + a j2x2 + · · · + a j N xN = b j
... (1.59)

ak1x1 + ak2x2 + · · · + ak N xN = bk
...

aN1x1 + aN2x2 + · · · + aN N xN = bN

12 1 Linear algebra

we can choose any j ∈ [1, N], k ∈ [1, N] and any scalar c �= 0 to form the following
equivalent system that has exactly the same solution(s):

a11x1 + · · · + a1N xN = b1
...

a j1x1 + · · · + a j N xN = b j
... (1.60)

(ca j1 + ak1)x1 + · · · + (ca j N + ak N)xN = (cb j + bk)
...

aN1x1 + · · · + aN N xN = bN

This procedure is known as an elementary row operation. The particular one shown here
we denote by k ← c × j + k.

We use matrix-vector notation, Ax = b, and write the system (1.59) as

a11 a12 . . . a1N
...

...
...

a j1 a j2 . . . a j N
...

...
...

ak1 ak2 . . . ak N
...

...
...

aN1 aN2 . . . aN N

x1
...

x j
...

xk
...

xN

=

b1
...

b j
...

bk
...

bN

(1.61)

After the row operation k ← c × j + k, we have an equivalent system A′x = b′,

a11 a12 . . . a1N
...

...
...

a j1 a j2 . . . a j N
...

...
...

(ca j1 + ak1) (ca j2 + ak2) . . . (ca j N + ak N)
...

...
...

aN1 aN2 . . . aN N

x1
...

x j
...

xk
...

xN

=

b1
...

b j
...

(cb j + bk)
...

bN

(1.62)

As we must change both A and b, it is common to perform row operations on the augmented

Elimination methods for solving linear systems 13

matrix (A, b) of dimension N × (N + 1),

(A, b) =

a11 . . . a1N b1
...

...
...

a j1 . . . a j N b j
...

...
...

ak1 . . . ak N bk
...

...
...

aN1 . . . aN N bN

(1.63)

After the operation k ← c × j + k, the augmented matrix is

(A, b)′ =

a11 . . . a1N b1
...

...
...

a j1 . . . a j N b j
...

...
...

(ca j1 + ak1) . . . (ca j N + ak N) (cb j + bk)
...

...
...

aN1 . . . aN N bN

(1.64)

Gaussian elimination to place Ax = b in upper triangular form

We now build a systematic approach to solving Ax = b based upon a sequence of ele-
mentary row operations, known as Gaussian elimination. First, we start with the original
augmented matrix

(A, b) =

a11 a12 a13 . . . a1N b1

a21 a22 a23 . . . a2N b2

a31 a32 a33 . . . a3N b3
...

...
...

...
...

...
aN1 aN2 aN3 . . . aN N bN

 (1.65)

As long as a11 �= 0 (later we consider what to do if a11 = 0), we can define the finite scalar

λ21 = a21/a11 (1.66)

and perform the row operation 2 ← 2− λ21 × 1,

−λ21(a11x1 + a12x2 + · · · + a1N xN = b1)+ (a21x1 + a22x2 + · · · + a2N xN = b2)

(a21 − λ21a11)x1 + (a22 − λ21a12)x2 + · · · + (a2N − λ21a1N)xN = (b2 − λ21b1)
(1.67)

The coefficient multiplying x1 in this new equation is zero:

a21 − λ21a11 = a21 −
(

a21

a11

)
a11 = a21 − a21 = 0 (1.68)

14 1 Linear algebra

We use the notation (A, b)(2,1) for the augmented matrix obtained after placing a zero at
the (2,1) position through the operation 2 ← 2− λ21 × 1,

(A, b)(2,1) =

a11 a12 . . . a1N b1

0 (a22 − λ21a12) . . . (a2N − λ21a1N) (b2 − λ21b1)
a31 a32 . . . a3N b3

...
...

...
...

aN1 aN2 . . . aN N bN

 (1.69)

Again, it is important to note that the linear system A(2,1)x = b(2,1) has the same solution(s)
x as the original system Ax = b.

As we develop this method, let us consider the example (1.2),

x1 + x2 + x3 = 4
2x1 + x2 + 3x3 = 7
3x1 + x2 + 6x3 = 2

(A, b) =

1 1 1 4

2 1 3 7
3 1 6 2

 (1.70)

Since a11 �= 0,

λ21 = a21

a11
= 2

1
= 2 (1.71)

and the row operation 2 ← 2− λ21 × 1 yields

(A, b)(2, 1) =

 1 1 1 4

[2− (2)(1)] [1− (2)(1)] [3− (2)(1)] [7− (2)(4)]
3 1 6 2

=

1 1 1 4

0 −1 1 −1
3 1 6 2

 (1.72)

We now define

a(2, 1)
2 j ≡ a2 j − λ21a1 j b(2, 1)

2 ≡ b2 − λ21b1 (1.73)

and write (A, b)(2,1) as

(A, b)(2,1) =

a11 a12 a13 . . . a1N b1

0 a(2, 1)
22 a(2, 1)

23 . . . a(2, 1)
2N b(2, 1)

2

a31 a32 a33 . . . a3N b3
...

...
...

...
...

...
aN1 aN2 aN3 . . . aN N bN

(1.74)

We continue this process and place zeros in all elements in the first column below the
diagonal, considering next the element in row 3. If a11 �= 0,

λ31 = a31

a11
(1.75)

and the row operation 3 ← 3− λ31 × 1 yields the new (3, 1) element

a31 − λ31a11 = a31 −
(

a31

a11

)
a11 = a31 − a31 = 0 (1.76)

Elimination methods for solving linear systems 15

The augmented matrix after this operation is

(A, b)(3, 1) =

a11 a12 a13 . . . a1N b1

0 a(2, 1)
22 a(2, 1)

23 . . . a(2, 1)
2N b(2, 1)

2

0 a(3, 1)
32 a(3, 1)

33 . . . a(3, 1)
3N b(3,1)

3

...
...

...
...

...
...

aN1 aN2 aN3 . . . aN N bN

(1.77)

where

a(3, 1)
3 j ≡ a3 j − λ31a1 j b(3, 1)

3 ≡ b3 − λ31b1 (1.78)

For the example system (1.72),

λ31 = a31

a11
= 3

1
= 3 (1.79)

and

(A, b)(3,1) =

 1 1 1 4

0 −1 1 −1
[3− 3(1)] [1− 3(1)] [6− 3(1)] [2− 3(4)]

=

1 1 1 4

0 −1 1 −1
0 −2 3 −10

 (1.80)

In general, for N > 3, we continue this procedure until all elements of the first column are
zero except a11. The augmented system matrix after this sequence of row operations is

(A, b)(N ,1) =

a11 a12 a13 . . . a1N b1

0 a(2, 1)
22 a(2, 1)

23 . . . a(2, 1)
2N b(2, 1)

2

0 a(3, 1)
32 a(3, 1)

33 . . . a(3, 1)
3N b(3, 1)

3
...

...
...

...
...

...

0 a(N , 1)
N2 a(N , 1)

N3 . . . a(N , 1)
N N b(N , 1)

N

(1.81)

We now move to the second column and perform row operations to place zeros everywhere
below the diagonal (2, 2) position. If a(2,1)

22 �= 0, we define

λ32 = a(3, 1)
32

/
a(2, 1)

22 (1.82)

and perform the row operation 3 ← 3− λ32 × 2, to obtain

(A, b)(3, 2) =

a11 a12 a13 . . . a1N b1

0 a(2, 1)
22 a(2, 1)

23 . . . a(2, 1)
2N b(2, 1)

2

0 0 a(3, 2)
33 . . . a(3, 2)

3N b(3, 2)
3

...
...

...
...

...
...

0 a(N , 1)
N2 a(N , 1)

N3 . . . a(N , 1)
N N b(N , 1)

N

(1.83)

16 1 Linear algebra

where

a(3, 2)
3 j ≡ a(3, 1)

3 j − λ32a(2, 1)
2 j b(3, 2)

3 ≡ b(3, 1)
3 − λ32b(2, 1)

2 (1.84)

For our example (A, b)(3,1) (1.80) we obtain

λ32 = a(3, 1)
32

/
a(2,1)

22 = (−2)/(−1) = 2 (1.85)

so that

(A, b)(3,2) =

 1 1 1 4

0 −1 1 −1
0 [(−2)− (2)(−1)] [3− (2)(1)] [(−10)− (2)(−1)]

=

1 1 1 4

0 −1 1 −1
0 0 1 −8

 (1.86)

For N > 3, we perform another N − 3 row operations to place all zeros below the principal
diagonal in the second column, yielding

(A, b)(N , 2) =

a11 a12 a13 . . . a1N b1

0 a(2, 1)
22 a(2, 1)

23 . . . a(2, 1)
2N b(2, 1)

2

0 0 a(3, 2)
33 . . . a(3, 2)

3N b(3, 2)
3

...
...

...
...

...
...

0 0 a(N , 2)
N3 . . . a(N , 2)

N N b(N , 2)
N

(1.87)

We then perform a sequence of row operations to place all zeros in the third column below
the (3, 3) position, then in column 4, we put all zeros below (4, 4), etc. When finished, the
augmented matrix is upper triangular, containing only zeros below the principal diagonal
a11, a22, . . . , aN N :

(A, b)(N , N−1) =

a11 a12 a13 a14 . . . a1N b1

0 a(2, 1)
22 a(2, 1)

23 a(2, 1)
24 . . . a(2, 1)

2N b(2, 1)
2

0 0 a(3, 2)
33 a(3, 2)

34 . . . a(3, 2)
3N b(3, 2)

3

0 0 0 a(4, 3)
44 . . . a(4, 3)

4N b(4, 3)
4

...
...

...
...

...
...

0 0 0 0 . . . a(N , N−1)
N N b(N , N−1)

N

(1.88)

For our example, the final augmented matrix is

(A, b)(3, 2) =

1 1 1 4

0 −1 1 −1
0 0 1 −8

 (1.89)

Elimination methods for solving linear systems 17

Solving triangular systems by substitution

The equations defined by A(N ,N−1)x = b(N ,N−1) (1.88) are

a11x1 + a12x2 + a13x3 + · · · + a1N xN = b1

a(2, 1)
22 x2 + a(2, 1)

23 x3 + · · · + a(2, 1)
2N xN = b(2, 1)

2
... (1.90)

a(N−1,N−2)
N−1,N−1 xN−1 + a(N−1,N−2)

N−1,N xN = b(N−1,N−2)
N−1

a(N ,N−1)
N ,N xN = b(N ,N−1)

N

For (1.89), these equations are

x1 + x2 + x3 = 4
−x2 + x3 = −1 (1.91)

x3 = −8

From the last equation, we obtain immediately the last unknown,

xN = b(N ,N−1)
N

/
a(N ,N−1)

N N (1.92)

For the example, x3 = −8/1 = −8.
We then work backwards, next solving for xN−1,

xN−1 =
[
b(N−1,N−2)

N−1 − a(N−1,N−2)
N−1,N xN

]/
a(N−1,N−2)

N−1,N−1 (1.93)

then for xN−2,

xN−2 =
[
b(N−2,N−3)

N−2 − a(N−2,N−3)
N−2,N−1 xN−1 − a(N−2,N−3)

N−2,N xN

]/
a(N−2,N−3)

N−2,N−2 (1.94)

until we obtain the values of all unknowns through this procedure of backward substitution.
For our example, we have

x2 = [(−1)− (1)(−8)]/(−1) = −7
(1.95)

x1 = [4− (1)(−7)− (1)(−8)]/1 = 19

so that a solution to the example system (1.70) is

x =

 x1

x2

x3

 =

19
−7
−8

 (1.96)

While we have found a solution, it remains to be established that this is the only solution.

Basic algorithm for solving Ax = b by Gaussian elimination

The following algorithm transforms a linear system to upper triangular form by Gaussian
elimination:

18 1 Linear algebra

allocate N 2 memory locations to store A, and N for b
for i = 1, 2, . . . , N − 1; iterate over columns from left to right

if aii = 0, STOP to avoid division by zero
for j = i + 1, i + 2, . . . , N ; iterate over rows below diagonal

λ ← a ji/aii

for k = i, i + 1, . . . , N ; iterate in row j from column # i to right
a jk ← a jk − λaik

end for k = i, i + 1, . . . , N
b j ← b j − λbi

end for j = i + 1, i + 2, . . . , N
end for i = 1, 2 , . . . , N − 1

The basic computational unit of this algorithm is the scalar operation

d ← a + b × c (1.97)

that comprises two floating point operations (FLOPs), one a scalar multiplication and
the other a scalar addition. The term “floating point operation” originates from the binary
system for representing real numbers in digital memory that is described in the supplemental
material found at the accompanying website. It is common to describe the computational
effort required by an algorithm in terms of the number of FLOPs that it performs during
execution.

The algorithm for Gaussian elimination contains three nested loops that each run over
all or part of the set of indices {1, 2, . . . , N}. Therefore, the total number of FLOPs is
proportional to N3 (the exact number, 2N 3/3 is computed in the supplemental material).
If we increase N by a factor of 10, the amount of work required increases by a factor of
103 = 1000. We see here the major problem with Gaussian elimination; it can become very
costly for large systems!

Backward substitution follows the algorithm:

allocate N memory locations for the components of x
for i = N , N − 1, . . . , 1; iterate over rows from bottom to top

sum = 0
for j = i + 1, i + 2, . . . , N ; iterate over lower columns

sum ← sum+ ai j × x j

end for j = i + 1, i + 2, . . . , N
xi ← [bi − sum]/aii

end i = N , N − 1, . . . , 1

As there are only two nested loops, the number of FLOPs scales only as N 2. Therefore, for
large systems, it takes far (N times) longer to transform the system into triangular form by
elimination (2N 3/3 FLOPs) than it does to solve the triangular system by substitution (N 2

FLOPs).

Elimination methods for solving linear systems 19

Gauss–Jordan elimination

In Gaussian elimination, we convert the system Ax = b into an upper triangular form
U x = c after 2N 3/3 FLOPs,

u11 u12 u13 . . . u1N

u22 u23 . . . u2N

u33 . . . u3N

. . .
...

uN N

x1

x2

x3
...

xN

 =

c1

c2

c3
...

cN

 (1.98)

that we then solve by backward substitution in another N 2 FLOPs. Instead of performing
backward substitution, we could continue the row operations to place zeros above the
diagonal, to obtain a diagonal system Dx = f ,

d11

d22

. . .

dN N

x1

x2
...

xN

 =

f1

f2
...
fN

 (1.99)

The solution is now computed very easily, x j = f j/d j j . This approach, Gauss–Jordan
elimination, is rarely used in computational practice.

Partial pivoting

Let us consider again the first row operation in Gaussian elimination. We start with the
original augmented matrix of the system,

(A, b) =

a11 a12 a13 . . . a1N b1

a21 a22 a23 . . . a2N b2

a31 a32 a33 . . . a3N b3
...

...
...

...
...

aN1 aN2 aN3 . . . aN N bN

 (1.100)

and perform the row operation 2 ← 2+ λ21 × 1 to obtain

(A, b)(2, 1) =

a11 a12 . . . a1N b1

(a21 − λ21a11) (a22 − λ21a12) . . . (a2N − λ21a1N) (b2 − λ21b1)
a31 a32 . . . a3N b3

...
...

...
...

aN1 aN2 . . . aN N bN

(1.101)
To place a zero at the (2,1) position, we define λ21 as

λ21 = a21/a11 (1.102)

but if a11 = 0, λ21 blows up to ±∞. What do we do then?

20 1 Linear algebra

We avoid such divisions by zero through the technique of partial pivoting. Before begin-
ning any row operations, let us examine the first column of A,

A(:, 1) =

a11

a21

a31
...

aN1

 (1.103)

and search all elements in this column to find the row j that contains the element with the
largest magnitude,

|a j1| = maxk∈[1, N]{|ak1|} (1.104)

Since the order in which the equations appear is irrelevant, we are perfectly free to exchange
rows 1 and j to form the equivalent system

(Ā, b̄) =

a j1 a j2 a j3 . . . a j N b j

a21 a22 a23 . . . a2N b2
...

...
...

...
...

a11 a12 a13 . . . a1N b1
...

...
...

...
...

aN1 aN2 aN3 . . . aN N bN

(1.105)

As long as any of the elements of the first column of A are nonzero, a j1 = ā11 is
nonzero and the scalar λ21 = ā21/ā11 is finite. We may then perform without difficulty
the row operations on (Ā, b̄) that place zeros in the first column below the diagonal.
By contrast, if all of the elements of the first column are zero, as they must be if ā11 =
a j1 = 0, there can be no unique solution. We thus stop the elimination procedure at this
point.

In Gaussian elimination with partial pivoting, when moving to column i, we first examine
all elements in this column at or below the diagonal, and select the row j ≥ i with the largest
magnitude element,

|a ji | ≥ |aki | ∀ k = i, i + 1, . . . , N (1.106)

If j �= i, we swap rows j and i, and thus, unless all elements at or below the diagonal
in column i are zero, |a ji | �= 0. We then can compute the scalars λi+1,i,...,λN ,i without
having to divide by zero. If |a ji | is zero, then all of the elements ai,i , ai+1,i,..., aN ,i must be
zero.

To see what happens in this case, consider the following system, obtained after placing
zeros successfully below the diagonal in the first three columns. When preparing to eliminate
the values in the fourth column, we find that all values at or below the diagonal are already

Elimination methods for solving linear systems 21

zero,

(A, b)(N , 3) =

a11 a12 a13 a14 . . . a1N b1

0 a(2, 1)
22 a(2, 1)

23 a(2, 1)
24 . . . a(2, 1)

2N b(2, 1)
2

0 0 a(3, 2)
33 a(3, 2)

34 . . . a(3, 2)
3N b(3, 2)

3

0 0 0 0 . . . a(4, 3)
4N b(4, 3)

4

0 0 0 0 . . . a(5, 3)
5N b(5, 3)

5

...
...

...
...

...
...

0 0 0 0 . . . a(N , 3)
N N b(N , 3)

N

(1.107)

Thus, we can write the fourth column as a linear combination of the first three columns, for

some c1, c2, c3,

a j4 = c1a j1 + c2a j2 + c3a j3 ∀ j = 1, 2, . . . , N (1.108)

so that any equation j in this system can be written as

a j1x1 + a j2x2 + a j3x3 + (c1a j1 + c2a j2 + c3a j3)x4 + · · · + a j N xN = b j

a j1(x1 + c1x4)+ a j2(x2 + c2x4)+ a j3(x3 + c3x4)+ · · · + a j N xN = b j (1.109)

This means that we can make any change to x of the form

x1 → x1 − c1�x4 x2 → x2 − c2�x4

x3 → x3 − c3�x4 x4 → x4 +�x4

(1.110)

without changing the value of Ax. Obviously, there can be no unique solution of Ax = b,
and we thus stop the elimination procedure at this point.

If a unique solution exists, Gaussian elimination with partial pivoting will find it, even
if there are zeros along the principal diagonal of the original augmented matrix. It is called
partial pivoting because we only swap rows; if we swap columns as well (which necessi-
tates more complex book-keeping, but results in better propagation of round-off error), we
perform Gaussian elimination with full pivoting.
The algorithm for Gaussian elimination with partial pivoting is

for i = 1, 2, . . . , N − 1; iterate over columns
select row j ≥ i such that |a ji | = max j≥i {|aii |, |ai+1, i |, . . . , |aN1|}
if a ji = 0, no unique solution exists, STOP
if j �= i, interchange rows i and j of augmented matrix
for j = i + 1, i + 2, . . . , N ; iterate over rows j > i

λ ← a ji/aii

for k = i, i + 1, . . . , N ; iterate over elements in row j from left
a jk ← a jk − λaik

end for k = i, i + 1, . . . , N
b j ← b j − λbi

end for j = i + 1, i + 2, . . . , N
end for i = 1, 2, . . . , N − 1

22 1 Linear algebra

Backward substitution proceeds in the same manner as before. Even if rows must be
swapped for each column, the computational overhead of partial pivoting is relatively
small.

To demonstrate Gaussian elimination with partial pivoting, consider the system of equa-
tions (1.70) with the augmented matrix

(A, b) =

1 1 1 4

2 1 3 7
3 1 6 2

 (1.111)

First, we examine the first column to see that the element of largest magnitude is in row 3.
We thus swap rows 1 and 3,

(Ā, b̄) =

3 1 6 2

2 1 3 7
1 1 1 4

 (1.112)

Note that we swap the rows even though a11 �= 0. As is shown in the supplemen-
tal material in the accompanying website, we do this to improve the numerical sta-
bility with respect to round-off error. We next do a row operation to zero the (2, 1)
element.

λ21 = ā21/ā11 = 2/3 (1.113)

(A, b)(2, 1) =

 3 1 6 2[

2− (
2
3

)
3
] [

1− (
2
3

)
1
] [

3− (
2
3

)
6
] [

7− (
2
3

)
2
]

1 1 1 4

=

3 1 6 2

0 1
3 −1 5 2

3
1 1 1 4

 (1.114)

We then perform another row operation to zero the (3, 1) element.

λ31 = a(2, 1)
31

/
a(2, 1)

11 = 1/3 (1.115)

(A, b)(3, 1) =

3 1 6 2
0 1

3 −1 5 2
3[

1− (
1
3

)
3
] [

1− (
1
3

)
1
] [

1− (
1
3

)
6
] [

4− (
1
3

)
2
]

=

3 1 6 2
0 1

3 −1 5 2
3

0 2
3 −1 3 1

3

 (1.116)

We now move to the second column, and note that the element of largest magnitude appears

Existence and uniqueness of solutions 23

in the third row. We thus swap rows 2 and 3,

(Ā, b̄)(3, 1) =

3 1 6 2
0 2

3 −1 3 1
3

0 1
3 −1 5 2

3

 (1.117)

and perform a row operation to zero the (3, 2) element.

λ32 =
(

1

3

)/(
2

3

)
= 1

2
(1.118)

(A, b)(3, 2) =

3 1 6 2
0 2

3 −1 3 1
3

0
[

1
3 − 1

2

(
2
3

)] [−1− 1
2 (−1)

] [
5 2

3 −
(

1
2

) (
3 1

3

)]

=

3 1 6 2
0 2

3 −1 3 1
3

0 0 − 1
2 4

 (1.119)

We now have an upper triangular system to solve by backward substitution,

3x1 + x2 + 6x3 = 2
2
3 x2 − x3 = 3 1

3 (1.120)
− 1

2 x3 = 4

First, x3 = −8 from the last equation. Then, from the second equation,

x2 =
[
3 1

3 + x3
] /(

2
3

) = −7 (1.121)

Finally, from the first equation,

x1 = (2− 6x3 − x2)/3 = 19 (1.122)

The solution to (1.70) is thus (x1, x2, x3) = (19,−7,−8).

Existence and uniqueness of solutions

With Gaussian elimination and partial pivoting, we have a method for solving linear systems
that either finds a solution or fails under conditions in which no unique solution exists. In
this section, we consider at more depth the question of when a linear system possesses a real
solution (existence) and if so, whether there is exactly one (uniqueness). These questions are
vitally important, for linear algebra is the basis upon which we build algorithms for solving
nonlinear equations, ordinary and partial differential equations, and many other tasks.

Interpreting Ax = b as a linear transformation

As a first step, we consider the equation Ax = b from a somewhat more abstract viewpoint.
We note that A is an N × N real matrix and x and b are both N-dimensional real vectors.

24 1 Linear algebra

ℜ ℜ
A

A

v Av

x b

Figure 1.2 Interpretation of a real N × N matrix A as a linear transformation from the domain �N

into the codomain �N .

We have introduced the notation �N for the set of all real N-dimensional vectors. The term
set merely refers to a collection of objects; however, �N possesses many other properties,
including

closure under addition

if v ∈ �N and w ∈ �N , then the vector v+ w is also in �N ;

closure under multiplication by a real scalar

if v ∈ �N and c ∈ �, then cv ∈ �N .

Also, for any u, v, w ∈ �N , any c1, c2 ∈ �, a null vector 0 ∈ �N , and for every v ∈ �N

defining an additive inverse, −v ∈ �N , we have the identities

u+ (v+ w) = (u+ v)+ w c1(v+ u) = c1v+ c1u
u+ v = v+ u (c1 + c2)v = c1v+ c2v

(1.123)v+ 0 = v (c1c2)v = c1(c2v)
v+ (−v) = 0 1v = v

As these properties hold for �N, we say that �N not only constitutes a set, but that it is also
a vector space.

Using the concept of the vector space �N, we now interpret the N × N real matrix A
in a new fashion. We note that for any v ∈ �N , the matrix-vector product with A is also in
�N , Av ∈ �N . This product is formed by the rule

Av =

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aN1 aN2 . . . aN N

v1

v2
...

vN

 =

a11v1 + a12v2 + · · · + a1N vN

a21v1 + a22v2 + · · · + a2N vN
...

aN1v1 + aN2v2 + · · · + aN N vN

(1.124)

Thus, A maps any vector v ∈ �N into another vector Av ∈ �N .

Also, since for any v, w ∈ �N , c ∈ �, we have the linearity properties

A(v+ w) = Av+ Aw A(cv) = cA v (1.125)

we say that A is a linear transformation mapping�N into itself, A : �N → �N . The action
of A upon vectors v, w ∈ �N is sketched in Figure 1.2. From this interpretation of A as

Existence and uniqueness of solutions 25

w v Bw

 AB

B Aℜ
ℜ

ℜ

Av ABw

Figure 1.3 Interpreting matrix multiplication C = AB as sequence of linear transformations.

a linear transformation, we can understand better the existence and uniqueness properties
of Ax = b. We see that a solution exists if there is some vector x ∈ �N that is mapped
into b ∈ �N by A, and that this solution is unique if there exists no other y �= x that is also
mapped into b by A.

Multiplication of matrices

Before continuing with our discussion of existence and uniqueness, let us see how the inter-
pretation of a matrix as a linear transformation immediately dictates a rule for multiplying
two matrices. Let us say that we have an M × P real matrix A that maps every v ∈ �P

into some Av ∈ �M . In addition, we also have some P × N real matrix B that maps every
w ∈ �N into some Bw ∈ �P . We therefore make the association v = Bw and define a
composite mapping from �N into �M, C, such that for w ∈ �N , we obtain Cw ∈ �M by
first multiplying w by B and then by A (Figure 1.3). That is,

v = Bw Cw = Av = A(Bw) = (AB)w (1.126)

This defines the M × N matrix C, obtained by matrix multiplication,

C = AB (1.127)

To construct C, we compute for w ∈ �N the vector Bw ∈ �P ,

Bw =

b11 b12 . . . b1N

b21 b22 . . . b2N
...

...
...

bP1 bP2 . . . bP N

w1

w2
...

w N

 =

N∑
j=1

b1 j w j

...
N∑

j=1
bP j w j

(1.128)

We next apply A to Bw ∈ �P ,

A(Bw) =

a11 a12 . . . a1P

a21 a22 . . . a2P
...

...
...

aM1 aM2 . . . aM P

N∑
j=1

b1 j w j

...
N∑

j=1
bP j w j

=

P∑
k=1

a1k

N∑
j=1

bkj w j

...
P∑

k=1
aMk

N∑
j=1

bkj w j

(1.129)

26 1 Linear algebra

Comparing this to the product of an M × N matrix C and w ∈ �N yields

Cw=

c11 c12 . . . c1N

c21 c22 . . . c2N
...

...
...

cM1 cM2 . . . cM N

w1

w2
...

w N

 =

N∑
j=1

c1 j w j

...
N∑

j=1
cM j w j

=

N∑
j=1

(
P∑

k=1
a1k bk j

)
w j

...
N∑

j=1

(
P∑

k=1
aMk bkj

)
w j

 (1.130)

We therefore have the following rule for matrix multiplication to form the M×N matrix
product C = AB of an M×P matrix A and a P×N matrix B:

ci j =
P∑

k=1

aikbk j (1.131)

To obtain ci j , we sum the products of the elements of A in row i with those of B in column
j. The matrix product AB is defined only if the number of columns of A equals the number
of rows of B.

We also note that, in general, matrix multiplication is not commutative,

AB �= B A (1.132)

From this rule for matrix multiplication, we obtain the following relation for the transpose
of a product of two equal-sized square matrices,

(AB)T = BT AT (1.133)

Vector spaces and basis sets

We must discuss one more topic before considering the existence and uniqueness of solutions
to linear systems: the use of basis sets. The set of vectors {b[1], b[2], . . . , b[P]} in�N is said
to be linearly independent if there exists no set of real scalars { c1, c2, . . . , cP} except that
of all zeros, c j = 0, j = 1, 2, . . . , P , such that

c1b[1] + c2b[2] + · · · + cP b[P] = 0 (1.134)

In other words, if a set is linearly independent, no member of the set can be expressed as
a linear combination of the others. For vectors in �N, a set {b[1], b[2], . . . , b[P]} can be
linearly independent only if P ≤ N .

If P = N , we say that the set of N linearly independent vectors {b[1], b[2], . . . , b[N]}
forms a basis set for �N . Then any vector v ∈ �N may be expressed as a linear combination

v = c1b[1] + c2b[2] + · · · + cN b[N] c j ∈ � (1.135)

A common question is

Existence and uniqueness of solutions 27

Given v ∈ �N and a linearly independent basis {b[1], b[2], . . . , b[N]},what is the set of scalar coeffi-
cients {c1, c2, . . . , cN} that represent v as the basis set expansion v = c1b[1] + c2b[2] + · · · + cN b[N]?

To answer this question, we note that we obtain a set of N linear equations by forming the
dot products of v with each b[k],

c1
(
b[1] · b[1]

)+ c2
(
b[1] · b[2]

)+ · · · + cN

(
b[1] · b[N]

) = (
b[1] · v)

c1
(
b[2] · b[1]

)+ c2
(
b[2] · b[2]

)+ · · · + cN

(
b[2] · b[N]

) = (
b[2] · v)

... (1.136)
c1
(
b[N] · b[1]

)+ c2
(
b[N] · b[2]

)+ · · · + cN

(
b[N] · b[N]

) = (
b[N] · v)

In matrix-vector form, this system is written as

(
b[1] · b[1]

) (
b[1] · b[2]

)
. . .

(
b[1] · b[N]

)
(
b[2] · b[1]

) (
b[2] · b[2]

)
. . .

(
b[2] · b[N]

)
...

...
...(

b[N] · b[1]
) (

b[N] · b[2]
)

. . .
(
b[N] · b[N]

)

c1

c2
...

cN

 =

(
b[1] · v)(
b[2] · v)

...(
b[N] · v)

 (1.137)

To compute the scalar coefficients in this manner, we must solve a system of N linear equa-
tions, requiring ∼N 3 FLOPs. However, if we were to use a basis set {w [1], w [2], . . . , w [N]}
that is orthogonal, i.e., the dot product between any two unlike members is zero,

w [i] · w [j] = ∣∣w [i]
∣∣2 δi j =

{∣∣w [i]
∣∣2 , i = j

0, i �= j
(1.138)

the coefficients are obtained far more easily,

∣∣w [1]
∣∣2 ∣∣w [2]

∣∣2
. . . ∣∣w [3]

∣∣2

c1

c2
...

cN

 =

(
w [1] · v)(
w [2] · v)

...(
w [N] · v)

c j =
(
w [j] · v)∣∣w [j]

∣∣2
j = 1, 2, . . . , N

(1.139)
For this reason, the use of orthogonal basis sets, and of orthonormal basis sets
{u[1], u[2], . . . , u[N]} that in addition have all |u[k]| = 1, is common. For an orthonormal
basis, we have simply

c j = u[j] · v v =
N∑

j=1

(
u[j] · v)u[j] (1.140)

28 1 Linear algebra

w2

b2

b1 w1
str act tis
ar t r b2

Figure 1.4 Gram–Schmidt method makes vectors orthogonal through projection operations.

Gram–Schmidt orthogonalization

We describe here a simple method for forming an orthogonal basis set {w [1],

w [2], . . . , w [N]} for �N from one, {b[1], b[2], . . . , b[N]}, that is merely linearly indepen-
dent. As a first step, we simply assign w [1] to be

w [1] = b[1] (1.141)

Next, we write w [2] as a linear combination of b[2] and w [1],

w [2] = b[2] + s21w [1] s21 ∈ � (1.142)

and enforce that w [2] be orthogonal to w [1] through our choice of s21,

w [1] · w [2] = 0 = w [1] · b[2] + s21
(
w [1] · w [1]

)
s21 = −w [1] · b[2]∣∣w [1]

∣∣2 (1.143)

so that

w [2] = b[2] −
[

w [1] · b[2]∣∣w [1]
∣∣2

]
w [1] (1.144)

Essentially, we “project out” the component of b[2] in the direction of w [1], as shown in
Figure 1.4.

We next write

w [3] = b[3] + s31w [1] + s32w [2] (1.145)

and choose s31 and s32 such that w [3] · w [1] = w [3] · w [2] = 0, to obtain

w [3] = b[3] −
[

w [1] · b[3]∣∣w [1]
∣∣2

]
w [1] −

[
w [2] · b[3]∣∣w [2]

∣∣2
]

w [2] (1.146)

This process may be continued to fill out the orthogonal basis set {w [1], w [2], . . . , w [N]},
where

w [k] = b[k] −
k−1∑
j=1

[
w [j] · b[k]∣∣w [j]

∣∣2
]

w [j] (1.147)

Existence and uniqueness of solutions 29

From this orthogonal basis set {w [1], w [2], . . . , w [N]}, an orthonormal one {u[1],

u[2], . . . , u[N]} may be formed by

u[j] = w [j]
/ ∣∣w [j]

∣∣ (1.148)

or we can normalize the vectors as we generate them,

w [k] = b[k] −
k−1∑
j=1

[
u[j] · b[k]

]
u[j] u[k] = w [k]∣∣w [k]

∣∣ k = 1, 2, . . . , N (1.149)

While this method is straightforward, for very large N, the propagation of round-off errors is
a problem. We discuss in Chapter 3 the use of eigenvalue analysis to generate an orthonormal
basis set with better error properties.

Subspaces and the span of a set of vectors

Let us say that we have some set of vectors {b[1], b[2], . . . , b[P]} in �N with P ≤ N . We
then define the span of {b[1], b[2], . . . , b[P]} as the set of all vectors v ∈ �N that can be
written as a linear combination of members of the set,

span
{
b[1], b[2], . . . , b[P]

} ≡ {
v ∈ �N

∣∣v = c1b[1] + c2b[2] + · · · + cP b[P]
}

(1.150)

We see that span {b[1], b[2], . . . , b[P]} possesses the properties of closure under addition,
closure under multiplication by a real scalar, and all of the other properties (1.123) required
to define a vector space. We thus say that span{b[1], b[2], . . . , b[P]} is a subspace of �N.

Let S be some subspace in �N. The dimension of S is P, dim(S) = P , if there exists
some spanning set {b[1], b[2], . . . , b[P]} that is linearly independent. If dim(S) = P , then
any spanning set of S with more than P members must be dependent. Since any linearly
independent spanning set of �N must contain N vectors, dim(�N) = N .

The null space and the existence/uniqueness of solutions

We are now in a position to consider the existence and uniqueness properties of the linear
system Ax = b, where x, b ∈ �N and A is an N × N real matrix. Viewing A as a linear
transformation, the problem of solving Ax = b may be envisioned as finding some x ∈ �N

that is mapped by A into a specific b ∈ �N . We now ask the following questions:

For particular A and b, when does there exist some x ∈ �N such that Ax = b? (existence
of solutions)

For particular A and b, if a solution x ∈ �N exists, when is it the only solution? (uniqueness
of solution)

The answers to these questions depend upon the nature of the null space, or kernel, of
A, KA, that is defined as the subspace of all vectors w ∈ �N that are mapped by A into the
null vector, 0 (Figure 1.5). We know that the null space must contain at least the null vector
itself, as for any A,

A0 = 0 (1.151)

30 1 Linear algebra

A
ℜ ℜ

A

A

A

0

0
v

w

Av ≠ 0

Figure 1.5 The null space (kernel) of A, K A.

A

A
0

0
y Av ≠ 0

A

A

A

ℜ
ℜ

w

v

r ∉ A

Figure 1.6 Venn diagram of linear transformation by A from domain �N into codomain �N showing
the kernel and the range subspaces.

If the null space contains only the null vector, KA is said to be empty. As we now show, if
this is the case, then Ax = b must have a unique solution x ∈ �N for any possible b ∈ �N .
However, if the null space contains any other non zero vectors (i.e., Aw = 0 with w �= 0),
there is no unique solution. Then, depending upon the particular b ∈ �N , there may be
either no solution at all or an infinite number of them.

Theorem Uniqueness of solution for Ax = b Let x ∈ �N be a solution to the linear
system Ax = b, where b ∈ �N and A is an N ×N real matrix. If the null space (kernel)
of A contains only the null vector, K A = 0, this solution is unique.

Proof Let y ∈ �N be some vector, not necessarily x, that satisfies the system of equations,
Ay = b. We then define v = y − x, so that

Ay = A(x + v) = Ax + Av = b + Av (1.152)

If Ay = b, then v ∈ K A, as Av = 0. If the null space is empty, K A = 0, we must have
v = 0 and the solution x is unique. QED

Now that we have a theorem for uniqueness, let us consider existence. To do so, we define
the range of A, RA, as the subspace of all vectors y ∈ �N for which there exists some
v ∈ �N such that Av = y. Formally, we write

RA ≡
{

y ∈ �N
∣∣∃v ∈ �N , Av = y

}
(1.153)

Figure 1.6 shows the relationship between the range and the kernel of A.

Theorem Existence of solutions for Ax = b Let A be a real N × N matrix with a null
space (kernel) KA and range RA, and let b ∈ �N . Then,

Existence and uniqueness of solutions 31

(I) the dimensions of KA and RA satisfy the dimension theorem,

dim(K A)+ dim(RA) = N (1.154)

(II) If KA contains only the null vector 0, dim(K A) = 0, and so dim(RA) = N. The range
therefore completely fills�N so that every b ∈ �N is in the range, b ∈ RA, and for any
b ∈ �N , the system Ax = b has a solution.

Proof (I) Let us define an orthonormal basis {u[1], u[2], . . . , u[P], u[P+1], . . . , u[N]} for �N

such that the first P members of the basis span the kernel of A,

K A = span
{
u[1], u[2], . . . , u[P]

}
(1.155)

Since the kernel is a subspace and thus satisfies all of the properties of a vector space, we
can always form such a basis. Therefore, we can write any w ∈ K A as

w = c1u[1] + c2u[2] + · · · + cP u[P] (1.156)

and

dim(K A) = P (1.157)

We now write any arbitrary vector v ∈ �N as an expansion in this orthonormal basis with
the scalar coefficients v j = v · u[j],

v = v1u[1] + · · · + vP u[P] + vP+1u[P+1] + · · · + vN u[N] (1.158)

We now operate on this vector by A,

Av = [
v1 Au[1] + · · · + vP Au[P]

]+ [
vP+1 Au[P+1] + · · · + vN Au[N]

]
(1.159)

Av = A
[
v1u[1] + · · · + vP u[P]

]+ [
vP+1 Au[P+1] + · · · + vN Au[N]

]
As v1u[1] + · · · + vP u[P] ∈ K A, this equation becomes

Av = vP+1 Au[P+1] + · · · + vN Au[N] (1.160)

Since the range of A is the set of Av for all v ∈ �N , we see that any vector in the range can
be written as a linear combination of the N − P basis vectors {Au[P+1], . . . , Au[N]}, and
so dim(RA) = N − P. Thus, dim(K A)+ dim(RA) = N .

(II) follows directly from (I). QED

What happens to the existence and uniqueness of solutions to Ax = b if KA is not empty?
Let us say that dim(K A) = P > 0, and that we form the orthonormal basis for A as in the
proof above, such that we can write any w ∈ K A as

w = c1u[1] + c2u[2] + · · · + cP u[P] (1.161)

We now consider the arbitrary vector v ∈ �N , written as

v = v1u[1] + · · · + vP u[P] + vP+1u[P+1] + · · · + vN u[N] (1.162)

32 1 Linear algebra

and use a similar expansion for our specific b ∈ �N in Ax = b,

b = b1u[1] + · · · + bP u[P] + bP+1u[P+1] + · · · + bN u[N] (1.163)

We now write Av = b to consider when a solution v = x exists,

A
[
v1u[1] + · · · + vP u[P]

]+ A
[
vP+1u[P+1] + · · · + vN u[N]

]
= b1u[1] + · · · + bP u[P] + bP+1u[P+1] + · · · + bN u[N] (1.164)

Noting that v1u[1] + · · · + vP u[P] ∈ K A, we have

A
[
vP+1u[P+1] + · · · + vN u[N]

]
= b1u[1] + · · · + bP u[P] + bP+1u[P+1] + · · · + bN u[N] (1.165)

The vector Avon the left-hand side must be in RA, and thus must have no nonzero component
in KA; i.e., A[vP+1u[P+1] + · · · + vN u[N]] · w = 0 for any w ∈ K A. If any of the coeffi-
cients b1, . . . , bP on the right-hand side are nonzero, the two sides of the equation cannot
agree. Therefore, a solution to Ax = b exists if for every w ∈ K A, b · w = 0. However, if
the null space is not empty, this solution cannot be unique, because for any w ∈ K A, we
also have

A(x + w) = Ax + Aw = b + 0 = b (1.166)

A system Ax = b whose matrix has a nonempty kernel either has no solution, or an infinite
number of them.

We have now identified when the linear system Ax = b will have exactly one solution,
no solution, or an infinite number of solutions; however, these conditions are rather abstract.
Later, in our discussion of eigenvalue analysis, we see how to implement these conditions
for specific matrices A and vectors b.

Here, we have introduced some rather abstract concepts (vector spaces, linear trans-
formations) to analyze the properties of linear algebraic systems. For a fuller theoretical
treatment of these concepts, and their extension to include systems of differential equations,
consult Naylor & Sell (1982).

The determinant

In the previous section we have found that the null space of A is very important in determining
whether Ax = b has a unique solution. For a single equation, ax = b, it is easy to find
whether the null space is empty. If a �= 0, the equation has a unique solution x = b/a. If
a = 0, there is no solution if b �= 0 and an infinite number if b = 0.

We would like to determine similarly whether Ax = b has a unique solution for N ≥ 1.
We thus define the determinant of A as

det(A) = |A| =
{

c �= 0, if K A = 0
0, if ∃w ∈ K A, w �= 0

(1.167)

The determinant 33

If det(A) �= 0; i.e., if A is nonsingular, then Ax = b has a unique solution for all b ∈ �N .
Otherwise, if det(A) = 0; i.e., if A is singular, then no unique solution to Ax = b exists
(either there are no solutions or an infinite number of them).

A fuller discussion of matrix determinants is provided in the supplemental material in
the accompanying website, but here we summarize the main results. The determinant of a
matrix is computed from its matrix elements by the formula

det(A) =
N∑

i1=1

N∑
i2=1

. . .

N∑
iN=1

εi1,i2,...,iN ai1,1ai2,2 · · · aiN ,N (1.168)

aik ,k is the element of A in row ik, column k and εi1,i2,...,iN takes the values

εi1,i2,...,iN =

0, if any two of {i1, i2, . . . , iN } are equal
1, if (i1, i2, . . . , iN) is an even permuation of (1, 2, . . . , N)
−1, if (i1, i2, . . . , iN) is an odd permuation of (1, 2, . . . , N)

(1.169)

By an even or odd permutation of (1, 2, . . . , N) we mean the following: if no two of
{i1, i2, . . . , iN} are equal, then we can rearrange the ordered set (i1, i2, . . . , iN) into the
ordered set (1, 2, . . . , N) by some sequence of exchanges. Consider the set (i1, i2, . . . , iN) =
(3, 2, 4, 1) which we can reorder into (1, 2, 3, 4) by any of the following sequences, where
at each step we underline the two members that are exchanged,

(3, 2, 4, 1) → (3, 2, 1, 4) → (3, 1, 2, 4) → (1, 3, 2, 4) → (1, 2, 3, 4)
(3, 2, 4, 1) → (1, 2, 4, 3) → (1, 2, 3, 4)

(3, 2, 4, 1) → (4, 2, 3, 1) → (2, 4, 3, 1) → (1, 4, 3, 2) → (1, 4, 2, 3)
→ (1, 4, 3, 2) → (1, 2, 3, 4)

Some sequences reorder (3, 2, 4, 1) to (1, 2, 3, 4) in fewer steps than others, but for (3, 2, 4,
1), any possible sequence of simple exchanges that yield (1, 2, 3, 4) must comprise an even
number of steps; (3, 2, 4, 1) is therefore an even permutation. Similarly, because (3, 2, 1, 4)
can be reordered by the three exchanges

(3, 2, 1, 4) → (3, 1, 2, 4) → (1, 3, 2, 4) → (1, 2, 3, 4)

it is an odd permutation. The even or odd nature of a permutation is called its parity.
We can determine whether an ordered set (i1, i2, . . . , iN) has even or odd parity

by the following procedure: for each m = 1, 2, . . . , N , let αm be the number of inte-
gers in the set {im+1, im+2, . . . , iN} that are smaller than im. We sum these αm to
obtain

v =
N∑

m=1

αm (1.170)

If v = 0, 2, 4, 6, . . . , (i1, i2, . . . , iN) is even. If v = 1, 3, 5, 7, . . . , it is odd.

34 1 Linear algebra

Expansion by minors

From (1.168), it may be shown that det(A) may be written as an expansion in minors along
any row j or column j as

det(A) =
N∑

k=1

a jk C jk =
N∑

k=1

akj Ckj C jk = (−1) j+k M jk (1.171)

Mjk (the minor of ajk) is the determinant of the (N − 1)× (N − 1) matrix obtained by
deleting row j and column k of A. The quantity Cjk is the cofactor of ajk .

The determinant of 2 × 2 and 3 × 3 matrices

Expansion of minors can be useful when computing the determinant of a matrix, as the
minors are determinants of smaller matrices that are easier to compute. For example, the
determinant of a 3× 3 matrix can be written as

det(A) = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣ (1.172)

As the determinant of a 2× 2 matrix is

det(A) =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = ε12a11a22 + ε21a12a21 = a11a22 − a12a21 (1.173)

expansion by minors provides an easy means to compute the determinants of small matrices.
A general numerical approach is discussed below.

General properties of the determinant function

We now consider some general properties of the determinant. The proofs for some are given
in the supplemental material in the accompanying website.

Property I

The determinant of an N × N real matrix A equals that of its transpose, AT.

Property II

If every element in a row (column) of A is zero, det(A) = 0.

Property III

If every element in a row (column) of a matrix A is multiplied by a scalar c to form a matrix
B, then det(B) = c × det(A).

The determinant 35

Property IV

If two rows (columns) of A are swapped to form B, det(B) = −det(A).

Property V

If two rows (columns) of A are the same, then det(A) = 0.

Property VI

If we decompose a(m), the row of a matrix A, as

a(m) = b(m) + d (m) (1.174)

to form the matrices

A =

a(1)

...
a(m)

...
a(N)

B =

a(1)

...
b(m)

...
a(N)

D =

a(1)

...
d (m)

...
a(N)

(1.175)

then

det(A) = det(B)+ det(D) (1.176)

Property VII

If a matrix B is obtained from A by adding c times one row (column) of A to another row
(column) of A, then det(B) = det(A). That is, elementary row operations do not change the
value of the determinant.

Property VIII

det(AB) = det(A)× det(B) (1.177)

Property IX

If A is upper triangular or lower triangular, det(A) equals the product of the elements on the
principal diagonal, det(A) = a11 × a22 × · · · × aN N .

Computing the determinant value

Properties VI–IX give us the fastest method to compute the determinant. Note that the gen-
eral formula for det(A) is a sum of N! nonzero terms, each requiring N scalar multiplications,
and is therefore very costly to evaluate. Since Gaussian elimination merely consists of a
sequence of elementary row operations that by property VII do not change the determinant

36 1 Linear algebra

A

b Ax
x A1 b

ℜ ℜ

A1

Figure 1.7 Defining A−1 as the inverse transformation of A.

value and some row exchanges (partial pivots), that by property IV only change the sign of
the determinant, we obtain, after ∼N 3 FLOPs an upper triangular system U such that

det(A) = ±u11 × u22 × · · · × uN N (1.178)

Note that it takes nearly as long to obtain the value of the determinant (within a sign
change) as it does to solve the system. Therefore, when faced with a new system, we
attempt to solve it using Gaussian elimination without first checking that the determinant is
nonzero.

Matrix inversion

Let us consider an N × N real matrix A with det(A) �= 0 so that for every b ∈ �N , there
exists exactly one vector x ∈ �N such that Ax = b. We have interpreted A as a linear
transformation because it maps every v ∈ �N into a vector Av ∈ �N , and the properties
of linearity hold:

A(v+ w) = Av+ Aw A(cv) = cAv (1.179)

Similarly, we define the inverse transformation, A−1, such that if Ax = b, then x = A−1b.
This mapping assigns a unique x to every b as long as det(A) �= 0. The relationship between
A and A−1 is shown in Figure 1.7. The matrix A−1 that accomplishes this inverse transfor-
mation is called the inverse of A.

If A is singular, det(A) = 0, dim(KA) > 0 and by the dimension theorem, the range of
A cannot fill completely �N. It is therefore possible to find some r ∈ �N that is not in the
range of A, such that there exist no z ∈ �N for which Az = r (Figure 1.8). If det(A) = 0
it is therefore impossible to define an inverse A−1 that assigns to every v ∈ �N a vector
A−1v ∈ �N such that A(A−1v) = v. If det(A) = 0, A−1 does not exist (is not defined).

We now have a definition of A−1 as a linear transformation, but given a particular matrix
A that is nonsingular, how do we compute A−1? The (j, k) element of A−1 may be written
in terms of the cofactor of a jk as Cramer’s rule

(A−1) jk = C jk

det(A)
(1.180)

Numerical use of this equation is not very practical.

Matrix inversion 37

ℜ
ℜA

A
w

A

0

y Av ≠ 0

A

r ∉ A

0A

v

A1 nt deined r r ∉ A

Figure 1.8 Defining A−1 is impossible when det(A) = 0.

We obtain a more efficient method of computing A−1 by first noting that if A−1 exists,
then for every v ∈ �N , A(A−1v) = v . We next define the identity matrix, I, for which

Iv = v ∀v ∈ �N (1.181)

By the rule of matrix multiplication, I must take the form

I =

1
1

1
. . .

1

 (1.182)

Since A(A−1v) = v = A−1(Av), the inverse matrix A−1 must be related to A by

A−1 A = AA−1 = I (1.183)

We compute A−1 using the rule for matrix multiplication

AB = A

 | | |

b(1) b(2) . . . b(N)

| | |

 =

 | | |

Ab(1) Ab(2) . . . Ab(N)

| | |

 (1.184)

Writing A−1 and I in terms of their column vectors, AA−1 = I becomes

A

 | | |

ã(1) ã(2) . . . ã(N)

| | |

 =

 | | |

Aã(1) Aã(2) . . . Aã(N)

| | |

=

 | | |

e[1] e[2] . . . e[N]

| | |

 (1.185)

The column vectors of A−1 are obtained by solving the N linear systems

Aã(k) = e[k] k = 1, 2, . . . , N (1.186)

At first glance, it would appear that obtaining A−1 requires a factor N more effort than
solving a single linear system Ax = b; however, this overlooks the very important fact

38 1 Linear algebra

that every linear system Aã(k) = e[k] to be solved has the same matrix A. Therefore, dur-
ing Gaussian elimination, the sequence of row operations and pivoting is the same for
each system. It would be very helpful if we could do this elimination only once, and
store all of the details of how Gaussian elimination is performed for A, so that for sub-
sequent solution of any system Ax = b, we need only perform the backward substitution
step for the new b. Then, the work of computing the inverse scales only as N 3 rather
than N 4.

Matrix factorization

We have seen that the column vectors of A−1 may be computed one-by-one by solving the
N linear systems

Aã(k) = e[k] k = 1, 2, . . . , N (1.187)

More generally, let us say that we wish to solve some set of M linear systems that have
the same matrix A but different vectors b[1], b[2], . . . , b[M]. In this section, we show that
it is possible in this case to do the work of Gaussian elimination only once, and to factor
A into a product of two triangular matrices. Thus, each system with a new vector b[k] can
be solved with two successive substitutions. As these substitutions require only N 2 FLOPs
each, a much smaller number than the 2N 3/3 FLOPs required for Gaussian elimination,
this factorization can save much effort.

LU decomposition

Let us say that we want to solve M linear systems that have the same matrix,

Ax[k] = b[k] k = 1, 2, . . . , M (1.188)

Let us assume that it is possible to decompose A into the product of a lower triangular matrix
L and an upper triangular matrix U, A = LU . Then,

Ax[k] = LU x[k] = b[k] (1.189)

We obtain x[k] quickly by solving in succession two triangular problems, the first by forward
substitution and the second by backward substitution,

Lc[k] = b[k]

U x[k] = c[k] (1.190)

We now show that with some additional book-keeping, Gaussian elimination without par-
tial pivoting returns just such an LU factorization, A = LU . We now perform Gaussian

Matrix factorization 39

elimination on matrix A alone, without augmenting it with b,

A =

a11 a12 a13 . . . a1N

a21 a22 a23 . . . a2N

a31 a32 a33 . . . a3N
...

...
...

...
...

aN1 aN2 aN3 . . . aN N

 (1.191)

We perform the row operation 2 ← 2− λ21 × 1 with λ21 = a21/a11 to obtain

A(2,1) =

a11 a12 a13 . . . a1N

0 a(2,1)
22 a(2,1)

23 . . . a(2,1)
2N

a31 a32 a33 . . . a3N
...

...
...

...
...

aN1 aN2 aN3 . . . aN N

(1.192)

We know from our choice of λ21 = a21/a11 that a(2,1)
21 = 0; therefore, we are free to use this

location in memory to store something else. Let us take the advantage of this free location
to store the value of λ21,

A(2,1) =

a11 a12 a13 . . . a1N

λ21 a(2,1)
22 a(2,1)

23 . . . a(2,1)
2N

a31 a32 a33 . . . a3N
...

...
...

...
...

aN1 aN2 aN3 . . . aN N

(1.193)

Next, we perform the row operation 3 ← 3− λ31 × 1 with λ31 = a31/a11, and use the
location freed by the fact that a(3,1)

31 = 0 to store λ31,

A(3,1) =

a11 a12 a13 . . . a1N

λ21 a(2,1)
22 a(2,1)

23 . . . a(2,1)
2N

λ31 a(3,1)
32 a(3,1)

33 . . . a(3,1)
3N

...
...

...
...

...
aN1 aN2 aN3 . . . aN N

(1.194)

After completing Gaussian elimination, storing after each row operation k ← k − λk j × j
the value of λk j in the position freed by a jk = 0, we have in memory

A(N ,N−1) =

a11 a12 a13 a14 . . . a1N

λ21 a(2,1)
22 a(2,1)

23 a(2,1)
24 . . . a(2,1)

2N

λ31 λ32 a(3,2)
33 a(3,2)

34 . . . a(3,2)
3N

λ41 λ42 λ43 a(4,3)
44 . . . a(4,3)

4N
...

...
...

...
...

...

λN1 λN2 λN3 λN4 . . . a(N ,N−1)
N N

(1.195)

40 1 Linear algebra

We now extract from this matrix the lower and upper triangular matrices

L =

1
λ21 1
λ31 λ32 1

...
...

...
. . .

λN1 λN2 λN3 . . . 1

 U =

a11 a12 a13 . . . a1N

a(2,1)
22 a(2,1)

23 . . . a(2,1)
2N

a(3,2)
33 . . . a(3,2)

3N
. . .

...

a(N ,N−1)
N N

(1.196)

We demonstrate that A = LU by forming the product

LU =

1
λ21 1
λ31 λ32 1

...
...

...
. . .

λN1 λN2 λN3 . . . 1

a11 a12 a13 . . . a1N

a(2,1)
22 a(2,1)

23 . . . a(2,1)
2N

a(3,2)
33 . . . a(3,2)

3N
. . .

...

a(N ,N−1)
N N

(1.197)

For the elements in the first row of LU, matrix multiplication yields

(LU)1 j = (1)(a1 j) = a1 j (1.198)

Next, in the second row, we have

(LU)2 j = (λ21)(a1 j)+ a(2,1)
2 j (1.199)

But, since in Gaussian elimination, a(2,1)
2 j = a2 j − λ21 × a1 j ,

(LU)2 j = (λ21)(a1 j)+ [a2 j − λ21 × a1 j] = a2 j (1.200)

We can continue this process to find that each row of LU equals the corresponding row of
A, and thus A = LU .

As an example, consider the system (1.2),
1 1 1

2 1 3
3 1 6

 x1

x2

x3

 =

4

7
2

 (1.201)

Gaussian elimination (without partial pivoting) for this system was demonstrated earlier,
and from (1.70)–(1.89) we obtain the factorization

L =

1

2 1
3 2 1

 U =

 1 1 1

−1 1
1

 (1.202)

Multiplying these two matrices shows that indeed they satisfy A = LU .
We have seen that to make Gaussian elimination robust, we must include partial pivoting

so that all λk j are finite. When the factorization is performed using Gaussian elimination
with partial pivoting, the book-keeping is a bit more complex, but the result is similar. We
obtain lower and upper triangular matrices L and U, and a permutation matrix P, such that

P A = LU (1.203)

Matrix factorization 41

A permutation matrix is a matrix that can be obtained from the identity matrix by performing
some sequence of row or column interchanges. Since det(I) = 1, det(P) = ±1. For P A =
LU , P records the cumulative effect of the pivot operations conducted during Gaussian
elimination. An example of a permutation matrix is

P =

1 0 0

0 0 1
0 1 0

 Pv =

1 0 0

0 0 1
0 1 0

 v1

v2

v3

 =

 v1

v3

v2

 (1.204)

To solve Ax[k] = b[k], we premultiply the system by P and substitute for P A,

P Ax[k] = Pb[k]

LU x[k] = Pb[k] (1.205)
Lc[k] = Pb[k] U x[k] = c[k]

In MATLAB, LU factorization is invoked through the command lu. The following code
computes the LU factorization for the example of (1.70),

A = [1 1 1; 2 1 3; 3 1 6];
[L, U, P] = lu(A),
L =

1.0000 0 0
0.3333 1.0000 0
0.6667 0.5000 1.0000

U =
3.0000 1.0000 6.0000
0 0.6667 -1.0000
0 0 -0.5000

P =
0 0 1
1 0 0
0 1 0

Thus, we have

L =

 1

0.3333 1
0.6667 0.500 1

 U =

3 1 6

0.6667 −1
−0.5

 P =

0 0 1

1 0 0
0 1 0

(1.206)

The following code uses this LU decomposition to solve (1.70),

b = [4; 7; 2];
x = U\(L\(P∗ b)),
x =

19.0000
-7.0000
-8.0000

42 1 Linear algebra

For further discussion of LU factorization with pivoting, consult Quateroni et al.
(2000).

Cholesky decomposition

Since the transpose of a lower triangular matrix L is an upper triangular matrix, we might
wonder if it is possible for some matrix A, that in the LU decomposition, we can set U = LT

to obtain

A = L LT (1.207)

First, by taking the transpose of this equation, we see that any A that can be written in this
manner must be symmetric, A = AT,

AT = (L LT)T = L LT = A (1.208)

Also, for A to be nonsingular, L and LT must be nonsingular, so that for any v ∈ �N ,v �= 0,(
LT v

) · (LT v
)

> 0 (1.209)

From

vT Av = vT
(
L LT

)
v = (

LTv
)T(

LT v
) = (

LT v
) · (LT v

)
(1.210)

we see that a matrix A could be written as A = L LT only if it were symmetric and positive-
definite; i.e.,

vT Av > 0 ∀v ∈ �N ,v �= 0 (1.211)

While only a subset of all matrices are symmetric, positive-definite, they in fact form
an important subset, especially in numerical optimization. Thus A = L LT, known as a
Cholesky decomposition, is used frequently.

The special structure of a positive-definite matrix allows us to perform Cholesky factor-
ization more quickly than LU decomposition. We start by writing A = L LT explicitly,

a11 a21 a31 . . . aN1

a21 a22 a32 . . . aN2

a31 a32 a33 . . . aN3
...

...
...

...
...

aN1 aN2 aN3 . . . aN N

 =

L11

L21 L22

L31 L32 L33
...

...
...

. . .

L N1 L N2 L N3 . . . L N N

×

L11 L21 L31 . . . L N1

L22 L32 . . . L N2

L33 . . . L N3

. . .
...

L N N

 (1.212)

From the (1, 1) element we obtain

a11 = L11 × L11 L11 = (a11)1/2 (1.213)

Matrix factorization 43

From the (1, 2) element,

a12 = L11 × L21 L21 = a12/L11 (1.214)

Similarly, we compute the first column of L for j = 3, 4, . . . , N,

L j1 = a1 j/L11 (1.215)

Next, we move to the second column, and from the (2, 2) element obtain

a22 = L21L21 + L22L22 L22 =
(
a22 − L2

21

)1/2
(1.216)

and for j = 3, 4, . . . , N ,

a2 j = L21L j1 + L22L j2 L j2 = (a2 j − L21L j1)/L22 (1.217)

Continuing this process for columns 3, 4, etc. yields the algorithm:

for i = 1, 2, . . . , N ; iterate over each column of L

Lii ←
[

aii −
i−1∑
k=1

L2
ik

]1/2

for j = i + 1, i + 2, . . . , N ; iterate over elements below the diagonal

L ji ← 1

Lii

[
ai j −

i−1∑
k=1

Lik L jk

]

end j = i + 1, i + 2, . . . , N
end i = 1, 2, . . . , N

As there are only two nested loops, the FLOPs required scale only as N 2.
In MATLAB, Cholesky decomposition is invoked by chol; however, this function returns

not a lower-triangular matrix L with A = L LT but an upper-triangular matrix R = LT with
A = RT R. For the positive-definite matrix

A =

2 1 1

1 4 2
1 2 6

 (1.218)

the Cholesky factorization A = RT R is performed by the code,

A = [2 1 1; 1 4 2; 1 2 6];
R = chol(A),
R =

1.4142 0.7071 0.7071
0 1.8708 0.8018
0 0 2.2039

We see that A = RTR by

R′∗ R,
ans =

2.0000 1.0000 1.0000
1.0000 4.0000 2.0000
1.0000 2.0000 6.0000

44 1 Linear algebra

We use this Cholesky decomposition to solve quickly the system
2 1 1

1 4 2
1 2 6

 x1

x2

x3

 =

 7

15
23

 (1.219)

through the command

x = R\(R′\b),
x =

1.0000
2.0000
3.0000

Matrix norm and rank

We now introduce two important definitions for matrices. We describe how “large” a vector
v ∈ �N is through the use of a norm ‖v‖. For any particular choice of a vector norm ‖v‖,
we can generate a corresponding matrix norm

‖A‖ = maxv�=0
‖Av‖
‖v‖ = max‖v‖=1‖Av‖ (1.220)

that measures how “large” the matrix is.
The determinant, det(A) remains the proper measure of singularity. However, we might

want some more information on just how singular a particular matrix A is if det(A) = 0.
The rank of a matrix A is the number of the linearly independent rows (or columns) of the
matrix. Therefore, a nonsingular N × N matrix must be of rank N, and is said to be of
full rank. The rank also may be defined as the dimension of the range of A. Matrix rank is
discussed later in Chapter 3 within the context of singular value decomposition (SVD).

Submatrices and matrix partitions

The matrix operations that we have defined previously also extend to matrices that are
block-partitioned into submatrices. For example, consider the 4×4 matrices

A =

1 2 3 4
2 1 3 4
3 2 1 4
4 2 3 1

 B =

8 7 6 5
7 8 6 5
6 7 8 5
5 7 6 8

 (1.221)

We define from A the submatrices

A11 =
[

1 2
2 1

]
A12 =

[
3 4
3 4

]
A21 =

[
3 2
4 2

]
A22 =

[
1 4
3 1

]
(1.222)

Example. Modeling a separation system 45

to write A in block-partitioned form as

A =

1 2 3 4
2 1 3 4
3 2 1 4
4 2 3 1

 =

[

1 2
2 1

] [
3 4
3 4

]
[

3 2
4 2

] [
1 4
3 1

]

 =

[
A11 A12

A21 A22

]
(1.223)

Similarly,

B =

8 7 6 5
7 8 6 5
6 7 8 5
5 7 6 8

 =

[

8 7
7 8

] [
6 5
6 5

]
[

6 7
5 7

] [
8 5
6 8

]

 =

[
B11 B12

B21 B22

]
(1.224)

where

B11 =
[

8 7
7 8

]
B12 =

[
6 5
6 5

]
B21 =

[
6 7
5 7

]
B22 =

[
8 5
6 8

]
(1.225)

A + B can be obtained by summing the corresponding submatrices,

A + B =
[

A11 A12

A21 A22

]
+

[
B11 B12

B21 B22

]
=

[
(A11 + B11) (A12 + B12)
(A21 + B21) (A22 + B22)

]
(1.226)

More surprisingly, the rules for matrix multiplication and transposition also can be applied
to block-partitioned matrices, if the matrices are conformally partitioned; i.e., sized such
that all necessary products of submatrices are defined. Thus,

AB =
[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
(A11 B11 + A12 B21) (A11 B12 + A12 B22)
(A21 B11 + A22 B21) (A21 B12 + A22 B22)

]
(1.227)

AT =
[

A11 A12

A21 A22

]T

=
[

AT
11 AT

21

AT
12 AT

22

]
(1.228)

Example. Modeling a separation system

We consider a simple mass balance problem to demonstrate the use of MATLAB to solve a
system of linear equations. For the separation system of Figure 1.9, we know the inlet mass
flow rate (in kilograms per hour) and the mass fractions of each species in the inlet (stream
1) and each outlet (streams 2, 4, and 5). We wish to compute the mass flow rates of each
outlet stream.

Here we use the notation that iF is the mass flow rate of stream i, and iw j is the mass
fraction of species j in stream # i. We define the unknowns

x1 = 2F x2 = 4F x3 = 5F (1.229)

and set up balances for

46 1 Linear algebra

2 1

 2

1 1

2w1

w1

w1 2
w2
w

w2 2
w 22

2w2

1w1 2
1w2
1w 2

2w

Figure 1.9 Process diagram for separation system.

1. the total mass flow rate

2 F + 4 F + 5 F = 1 F (1.230)

2. the mass flow rate of species 1

(2w1) (2 F) + (4w1) (4 F) + (5w1) (5F) = (1w1) (1F) (1.231)

3. the mass flow rate of species 2

(2w2) (2 F) + (4w2) (4 F) + (5w2) (5 F) = (1w2) (1 F) (1.232)

This yields the set of three algebraic equations

x1 + x2 + x3 = 10
(0.04)x1 + (0.54)x2 + (0.26)x3 = 2 (1.233)
(0.93)x1 + (0.24)x2 + (0.0)x3 = 6

Gaussian elimination yields

x1 = 5.8238 x2 = 2.4330 x3 = 1.7433 (1.234)

sep system example.m performs this calculation. For further discussion of the formula-
tion of material and energy balances, and algorithms for their solution, consult Reklaitis
(1983).

Sparse and banded matrices

In the example above, the mathematical formulation of the problem was indeed a linear
system, and we could apply Gaussian elimination directly. Most mathematical problems,
however, are not expressed naturally as linear systems. Still, the availability for linear sys-
tems of rigorous existence and uniqueness conditions and an automated solution procedure

Sparse and banded matrices 47

B

e
ee

B v

Figure 1.10 Pressure-driven flow between two infinite, parallel, flat plates.

makes them ideal building blocks upon which to construct algorithms for more complex
problems.

Here, we solve a boundary value problem from fluid mechanics numerically by converting
it into a linear algebraic system. As this example makes clear, it is sometimes possible to
reduce greatly the computational burden of elimination when the matrix is banded; i.e., all
nonzero elements are found near the principal diagonal.

Example. Solving a boundary value problem from fluid mechanics

Consider the case of a Newtonian fluid undergoing laminar, pressure-driven flow between
two parallel, infinite flat plates separated by a distance B (Figure 1.10). The bottom plate is
stationary and the top plate moves at a constant velocity Vup. For a constant dynamic pressure
gradient, �P/�x, P = p − g · r , we wish to calculate the resulting velocity profile.

If we assume a velocity profile of the form

v(r , t) = vx (y)ex (1.235)

the equation of continuity for an incompressible fluid, ∇ · v = 0, is satisfied automatically
and the Navier–Stokes equation of motion

ρ
Dv

Dt
= ρ

∂

∂t
v+ ρv · ∇ v = −∇P + µ∇2v (1.236)

reduces to

0 = −
(

�P

�x

)
+ µ

d2 vx

dy2
(1.237)

A brief discussion of these equations is provided in the supplemental material in the accom-
panying website. For a more detailed treatment, see Bird et al. (2002) and Deen (1998).

We wish to solve this differential equation subject to the no-slip boundary conditions

vx (y = 0) = 0 vx (y = B) = Vup (1.238)

This is a classic problem from fluid mechanics that is solved easily by integrating the
differential equation twice and using the boundary conditions to obtain the constants of
integration. The resulting solution is

vx (y) = Vup

(y

B

)
+ 1

2µ

(
�P

�x

)
(y2 − y B) (1.239)

48 1 Linear algebra

......... 1

∆

 B

Figure 1.11 Placement of grid points for finite difference computation.

We now employ a numerical method to “solve” this problem by converting it into a set of
algebraic equations. For this particular example, there is little actual need to do so since an
analytical solution is available; however, the technique that we develop here can be used to
obtain numerical approximations to the solution even when no analytical solution exists.

For this example, we use the conceptually-simple method of finite differences that is
based on the following definition of the derivative of f (x):

d f

dx
= lim

�x→0

f (x +�x)− f (x −�x)

2�x

= lim
�x→0

f (x +�x)− f (x)

�x
= lim

�x→0

f (x)− f (x −�x)

�x
(1.240)

In the limit as �x → 0, all three formulas agree if the derivative indeed exists. In the
method of finite differences, we use finite, but “small,” values of �x in one of (1.240) to
approximate the derivative by an algebraic form. We study this method in further detail
in Chapter 6; however, for now we merely note that the first approximation formula given
above, the central-difference approximation, is the most accurate.

Our differential equation in this example involves the second derivative of the velocity;
therefore, we need to construct an algebraic approximation to this higher-order derivative.
We place a grid of N points along the computational domain y ∈ [0, B] (Figure 1.11) at the
locations

y j = j(�y) �y = B

N + 1
j = 1, 2, . . . , N (1.241)

At grid point j, we use a central-difference formula to approximate the local value of the
second derivative of the velocity,

d2 vx

dy2

∣∣∣∣
y j

≈

(
dvx

dy

)∣∣∣∣
y j+(�y)/2

−
(

dvx

dy

)∣∣∣∣
y j−(�y)/2

�y
(1.242)

Here, the values of the first derivatives are evaluated at the mid-points between the grid
locations. We then use yet other central-difference formulas for these mid-point values,(

dvx

dy

)∣∣∣∣
y j+(�y)/2

≈ vx (y j+1)− vx (y j)

�y

(
dvx

dy

)∣∣∣∣
y j−(�y)/2

≈ vx (y j)− vx (y j−1)

�y
(1.243)

to obtain the approximation of the second derivative at yj

d2 vx

dy2

∣∣∣∣
y j

≈ vx (y j+1)− 2vx (y j)+ vx (y j−1)

(�y)2
(1.244)

Sparse and banded matrices 49

In general, this approximation is not exact, and we must reduce the value of �y by increasing
N until the magnitude of the approximation error is below some acceptable value. For this
particular problem, as the true solution is a quadratic function, we are lucky and this algebraic
approximation is exact.

To “solve” a boundary value problem using the method of finite differences, we formulate
a set of N algebraic equations for the set of N unknowns {vx (y1), vx (y2), . . . , vx (yN)}. For
each grid point, we obtain an algebraic equation by requiring the differential equation to be
satisfied locally

0 = −
(

�P

�x

)
+ µ

d2 vx

dy2

∣∣∣∣
y j

(1.245)

If we insert the central-difference approximation for the second derivative, the algebraic
equation for grid point j is

0 = −
(

�P

�x

)
+ µ

vx (y j+1)− 2vx (y j)+ vx (y j−1)

(�y)2
(1.246)

We write this in a more compact form by defining the column vector

v =

v1

v2
...

vN

 =

vx (y1)
vx (y2)

...
vx (yN)

 (1.247)

so that the algebraic equation for grid point j becomes

v j+1 − 2v j + v j−1 = (�y)2

µ

(
�P

�x

)
(1.248)

It is standard practice to make the diagonal elements positive,

−v j+1 + 2v j − v j−1 = − (�y)2

µ

(
�P

�x

)
(1.249)

If we assemble these equations in matrix form, we obtain the system

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

v1

v2

v3
...

vN−1

vN

=

G + v0

G
G
...

G
G + vN+1

(1.250)

where

G = − (�y)2

µ

(
�P

�x

)
(1.251)

50 1 Linear algebra

and

v0 = vx (y = 0) vN+1 = vx (y = B) (1.252)

To enforce the no-slip boundary conditions, we merely set in the right-hand side vector of
(1.250)

v0 = 0 vN+1 = Vup (1.253)

By this technique, we have converted the original differential equation into a set of algebraic
equations for the values of the velocity at each grid point.

The matrix in (1.250) has a special structure: the only nonzero elements are located along
the main diagonal and on the diagonals immediately above and below. Such a matrix is said
to be tridiagonal. This special structure allows us to solve this system in a fraction of the
time required by brute-force Gaussian elimination.

Remember that the number of FLOPs required to perform Gaussian elimination for a
system of N equations is 2N 3/3. If we want, in general, to obtain an accurate solution of a
differential equation, we may need to use a grid of 100 or more points, so that the number
of FLOPs required is on the order of one million. In addition to CPU time, the memory
required to store the matrix is significant. A matrix for a system with N unknowns contains
N 2 elements, each requiring its own location in memory. As N increases, these numbers
become much larger. The number of FLOPs required to perform full Gaussian elimination
on a system of 1000 unknowns is on the order of one billion, and storing the matrix requires
one million locations in memory.

Because here nearly all of the matrix elements are zero, much of the effort of brute-
force Gaussian elimination is a waste of time. As the matrix is tridiagonal, we only need
to perform one row operation per column to zero the element immediately below the diag-
onal. Also, since each row only contains three non zero values, the number of FLOPs
required for each row operation is a small number, not on the order of N as is the case
generally. Thus, we can remove two of the nested for loops of the Gaussian elimina-
tion algorithm so that the total number of FLOPs scales only linearly with N. This is a
very important point, as this trick of taking advantage of the tridiagonal structure makes
feasible the numerical solution of this system even when the number of grid points is
large.

Banded and sparse matrices

More generally, a matrix is said to be sparse if most of its elements are zero. A sparse
matrix can be stored in memory efficiently by recording only the positions and values of
its nonzero elements. Let us say that we have an N × N matrix A with at most only three
non-zero elements per row. While the total number of elements is N 2, at most only 3N
are non-zero, and the matrix is sparse for large N. If Nnz � N 2 is the number of nonzero
elements in A, or at least an upper bound to the number of nonzero elements, we can store
all the information that we need about A in two integer vectors of length Nnz (for the row
and column positions of the nonzero elements) and a single real vector of length Nnz for
their values. For example, the matrix

Sparse and banded matrices 51

A =

2 −1
−1 2 −1

−1 2 −1
−1 2

 (1.254)

can be stored as

irow =

1
1
2
2
2
3
3
3
4
4

jcol =

1
2
1
2
3
2
3
4
3
4

a =

2
−1
−1
2
−1
−1
2
−1
−1
2

⇔

a11 = 2
a12 = −1
a21 = −1
a22 = 2

a23 = −1
a32 = −1
a33 = 2

a34 = −1
a43 = −1
a44 = 2

(1.255)

Obviously, this format requires much less memory for sparse matrices than does allocating
a separate location to store a real value for each element, whether it is zero or not.

Even though it is possible to store a sparse matrix efficiently, can we efficiently solve a
system by Gaussian elimination using this notation? We can if the matrix is banded; i.e., if
the nonzero values are clustered in the vicinity of the principal diagonal.

Definition A matrix A is said to be banded with bandwidth m if all nonzero elements
are located along diagonals removed at most by m positions from the principal diagonal.
The following matrices demonstrate this terminology, where asterisks denote the allowed
locations of nonzero elements and the principal diagonal is denoted by Ds,

D ∗ ∗
∗ D ∗ ∗
∗ ∗ D ∗ ∗

∗ ∗ D ∗ ∗
∗ ∗ D ∗ ∗

∗ ∗ D ∗ ∗
∗ ∗ D ∗ ∗

∗ ∗ D ∗ ∗
∗ ∗ D ∗

∗ ∗ D

bandwidth = 2

52 1 Linear algebra

D ∗ ∗ ∗
∗ D ∗ ∗ ∗
∗ ∗ D ∗ ∗ ∗
∗ ∗ ∗ D ∗ ∗ ∗

∗ ∗ ∗ D ∗ ∗ ∗
∗ ∗ ∗ D ∗ ∗ ∗

∗ ∗ ∗ D ∗ ∗ ∗
∗ ∗ ∗ D ∗ ∗

∗ ∗ ∗ D ∗
∗ ∗ ∗ D

bandwidth = 3

D ∗ ∗ ∗ ∗
∗ D ∗ ∗ ∗ ∗
∗ ∗ D ∗ ∗ ∗ ∗
∗ ∗ ∗ D ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ D ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ D ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ D ∗ ∗ ∗

∗ ∗ ∗ ∗ D ∗ ∗
∗ ∗ ∗ ∗ D ∗

∗ ∗ ∗ ∗ D

bandwidth = 4

Gaussian elimination for tightly banded matrices is particularly efficient, because for each
row there are at most m elements below the principal diagonal that must be eliminated.
Likewise, for each row operation, one need perform only about m + 1 eliminations. There-
fore, the number of FLOPs required to perform Gaussian elimination on an N × N matrix
of bandwidth m scales only as m2 N . For m « N , m2 N « N 3, and taking advantage of the
banded nature of A speeds up the calculation significantly. In particular, for (1.250), taking
advantage of the tridiagonal nature of A means that the computational effort scales linearly
with N, rather than as N 3 with full Gaussian elimination.

Treatment of sparse, banded matrices in MATLAB

MATLAB is structured to employ sparse-matrix notation very easily, often with no further
complication to the user beyond initially declaring the matrix to be sparse. The command

A = spalloc (M,N,Nnz);

allocates space in memory to store an M × N matrix in sparse format, for which an upper
bound on the number of nonzero elements is Nnz. This matrix is initialized to contain all
zeros; however, the nonzero elements are declared similarly to the full matrix format. For
example, the following code sets the matrix for the 1-D flow system,

Sparse and banded matrices 53

1

1

2

2

1
n

1 2 2

Figure 1.12 Spy plot of tridiagonal matrix (N = 25) showing location of nonzero elements.

A = spalloc (N,N,3∗N);
A(1,1) = 2; A(1,2)= -1;
for k = 2:(N-1)

A(k,k-1) = -1; A(k,k) = 2; A(k,k+1) = -1;
end
A(N,N-1) = - 1; A(N,N) = 2;

The locations of the nonzero elements in a sparse matrix are shown using the command
spy. The spy plot for the matrix produced by the code above is shown in Figure 1.12.

A listing of MATLAB functions for manipulating sparse matrices is returned by the
command sparfun. With these sparse functions, the matrix above can be generated more
efficiently by the code,

A = spalloc(N,N,3∗ N);
v = ones(N,1);
A = spdiags([- v 2∗v - v],- 1:1, N,N);

The MATLAB elimination solver “\,” also known as the mldivide function, can handle
matrices stored in sparse-matrix format. If the matrix is banded, the bandwidth is determined
and the elimination algorithm modified accordingly. If the matrix is not banded, the solver
attempts to reduce the bandwidth as much as possible by applying a heuristic algorithm that
interchanges rows and columns.

Let us solve the problem Ax = b, where A has been declared as above and b is a vector
containing all ones. Then, we obtain x quickly, taking advantage of the sparse, banded
structure of A, by typing the code

b = ones(N,1);
x = A\b;

54 1 Linear algebra

1

12

2

2

1

1

d d 1 e 1

× 1

v
 s

× 1

Figure 1.13 Velocity profile for 1-D laminar flow with a moving upper plate.

Solving the 1-D fluid flow problem in MATLAB

simple flow 1D.m solves the 1-D flow example above where the fluid is water (ρ =
103kg/m3, µ = 10−3Pa s), the upper plate is stationary, and the separation between plates
is 1 mm. The dynamic pressure gradient is selected to give a Reynolds’ number near 1. The
computed velocity profile is shown in Figure 1.13.

Fill-in (why Gaussian elimination is sometimes impractical)

It is important to note that many sparse systems cannot be placed in a banded form, and
elimination remains costly. For such systems, the iterative techniques discussed later in our
discussion of boundary value problems are preferred. Even if a matrix is banded; however,
elimination may be too costly due to fill-in.

The flow example (1.237) and (1.238) was of the form of a 1-D boundary value problem,

−d2ϕ

dy2
= f (y) ϕ(0) = ϕ0 ϕ(B) = ϕB (1.256)

Each row of the linear system resulting from finite differences on a uniform grid of spacing
�y has only three nonzero elements

Ak,k−1 = −1

(�y)2
Ak,k = 2

(�y)2
Ak,k+1 = −1

(�y)2
bk = f (yk) (1.257)

As is shown in Chapter 6, for the analogous problem on a 2-D domain,

−∇2ϕ = −∂2ϕ

∂x2
− ∂2ϕ

∂y2
= f (x, y) 0 ≤ x ≤ L 0 ≤ y ≤ H

BC1 ϕ(0, y) = 0 0 ≤ y ≤ H
BC2 ϕ(L , y) = 0 0 ≤ y ≤ H
BC3 ϕ(x, 0) = 0 0 ≤ x ≤ L
BC4 ϕ(x, H) = 0 0 ≤ x ≤ L

(1.258)

Sparse and banded matrices 55

1 2

1

1

2

1

1

2

1 2

1

1

2

1

1

2

1 2

1

A

n 1

n 22 n 22

n 22

2

Figure 1.14 Sparsity patterns of A and its LU factors, PA = LU, showing fill-in.

the method of finite differences on a uniform grid of Nx × Ny points, with the labeling
scheme

ϕ(xi , y j) = ϕn n = (i − 1)× Ny + j (1.259)

yields a linear system Aϕ = b of the form

An,n−Ny ϕn−Ny + An,n−1ϕn−1 + Annϕn + An,n+1ϕn+1 + An,n+Ny ϕn+Ny = bn

An,n−Ny = An,n+Ny =
[−1

(�x)2

]

An,n−1 = An,n+1 =
[−1

(�y)2

]
(1.260)

Ann =
[

2

(�x)2
+ 2

(�y)2

]
bn = f (xi , y j)

The nonzero elements in this system are located now on five diagonals: the principal diag-
onal, the diagonals immediately above and below the principal, and the two diagonals
offset by Ny diagonals from the principal. The sparsity pattern of this matrix for a grid of
15 × 15 points is shown in the upper left of Figure 1.14. While A is banded, the banded
region itself is quite sparse, containing mostly zeros except on five diagonals. The LU
factors from P A = LU are shown in the upper right and lower left of Figure 1.14.

Even though A contains only 901 nonzero elements (two-fifths of which are below
the diagonal), U contains 3272 nonzero elements. Partially, this is due to the fact that
if A has a bandwidth m, U generally has a bandwidth of 2m + 1; however, we also see
that the banded region of U is significantly more dense than that of A. That is, Gaussian
elimination fills-in zero positions of the original matrix with nonzero values. For the rela-
tively small system here, the increased memory and CPU-time demands due to fill-in are

56 1 Linear algebra

manageable; however, in many problems, elimination cannot be applied because of severe
fill-in.

Boundary value problems in three dimensions, for example, cannot be solved with Gaus-
sian elimination due to fill-in. For a boundary value problem involving a single field on a
regular grid in d dimensions with N grid points in each direction, the following scaling laws
hold for the number of nonzero elements before and after fill-in from elimination:

total number of grid points = N d

matrix dimension = N d × N d

total number of elements in A = (N d)2 = N 2d

number of nonzero elements per row = 1+ 2d
total number of nonzero elements in A = N d (1+ 2d) (1.261)
fraction of A elements that are nonzero ∝ N−d

bandwidth of A = N (d−1)

bandwidth of U following elimination = 2N (d−1) + 1
number of nonzero elements in U if band is dense = N d [2N (d−1) + 1] ∝ N (2d−1)

As the dimension increases, the fill-in problem becomes more acute, and we may not have
enough memory to store even the contents of A. For these reasons, in our later discussion
of boundary value problems (Chapter 6), we consider iterative methods for solving linear
systems that are not susceptible to fill-in and that do not require us even to store in memory
the components of A.

MATLAB summary

The primary tool to solve systems of linear algebraic equations is Gaussian elimination. In
MATLAB, this calculation is performed using the “backslash” operator “\.” The following
code demonstrates its use:

A = [1 - 2 2; 3 1 - 4; 3 - 2 1];
b = [7; - 3; 8];
x = A\b,

A matrix can be stored either in full format, allocating a memory location for each element,
as above, or in sparse format. To allocate memory for a sparse M× N matrix containing no
more than NZ nonzero elements, use

A = spalloc(M, N, NZ);

The matrix then may be treated essentially as one stored in full format,

N = 100;
A = spalloc(N, N, 3∗N);
for k = 1:N

A(k,k) = 2;
if(k > 1)

A(k,k- 1) = - 1

Problems 57

end
if(k < N)

A(k,k+1) = - 1;
end

end
b = ones(N,1);
x = A\b;

Such sparse systems may be generated more efficiently through use of specialty functions
such as spdiags. A list of sparse matrix function is generated by the command sparfun.

Gaussian elimination is used to form the decomposition P A = LU , where L is lower
triangular, U is upper triangular, and P is a permutation matrix, by

[L, U, P] = lu(A);

When A is positive-definite, the decomposition A = RT R, with R upper triangular, is
performed by Cholesky factorization,

R = chol(A);

The determinant of a matrix is computed, through LU factorization, by

det A = det(A);

A list of functions available for matrix manipulation is returned by

matfun

Problems

1.A.1. Solve the following linear system by hand, using Gaussian elimination with partial
pivoting, followed by backward substitution.

−2x1 + 3x2 + x3 = −6
−x1 + 3x2 + 3x3 = −8 (1.262)
2x1 − x2 + x3 = 2

1.A.2. For the matrix of the system in problem 1.A.1, compute by hand the LU decomposition
(you do not need to use pivoting).

1.A.3. Consider the problem of fitting a polynomial to the values of f(x) at points x0 < x1 <

x2 < · · · < xN . We wish to find the coefficients of a polynomial

p(x) = a0 + a1x + a2x2 + · · · + aN x N (1.263)

such that p(xk) = f (xk) for all k = 0, 1, . . . , N . Using the “\” linear solver, write a routine
that accomplishes this task, of the form

a = calc poly coeff(x,f);

x, f, and a are vectors of xk, f (xk), and ak respectively.

58 1 Linear algebra

1.A.4. Using Gram–Schmidt orthogonalization, write a routine that takes as input a vector
v ∈ �N and returns an N × N matrix V,

V =

 | | |
v v[2] . . . v[N]

| | |

 (1.264)

such that {v,v[2], . . . ,v[N]} forms an orthonormal basis for �N.

1.B.1. Compare the number of FLOPs necessary to solve a system of N linear algebraic
equations by Gaussian and Gauss–Jordan elimination. Which one requires less work?

1.B.2. You are studying the kinetics of an enzyme-catalyzed reaction converting a substrate
S to a product P. The reaction occurs through a two-stage mechanism of reversible substrate
S binding to enzyme E to form a complex ES, followed by irreversible conversion to the
product P,

E+ S ⇔ ES → E+ P (1.265)

The rate of conversion of substrate to product is

r = k2[ES] (1.266)

A mole balance on ES,

d

dt
[ES] = k1[E][S]− k−1[ES]− k2[ES] (1.267)

yields, under a quasi-steady state assumption (QSSA), d[ES]/dt = 0,

[ES] = k1[E][S]

(k−1 + k2)
(1.268)

If [E]0 is the total concentration of enzyme, bound and unbound, added to the system,
[E] = [E]0 − [ES], yielding

[ES] = [E]0[S]

Km + [S]
Km = k−1 + k2

k1
(1.269)

Thus, the reaction rate follows Michaelis–Menten kinetics,

r = k2[E]0[S]

Km + [S]
(1.270)

[E]0 is the original enzyme concentration added to start the reaction in units of grams of E
per liter. For r in units of grams of S converted per liter per minute, the units of [S] and Km

are grams of S per liter, and the units of k2 are grams of S converted per minute per gram of
E. You have conducted a series of experiments to measure the rate of substrate conversion
at various substrate and enzyme concentrations, and have obtained the data in Table 1.2.
The rate law can be written in the form

[E]0

r
= 1

k2
+ Km

k2

1

[S]
(1.271)

Problems 59

Table 1.2 Rate data for grams of S converted
per liter per minute

[S] g s/l [E]0 = 0.005 gE/l [E]0 = 0.01 gE/ l

1.0 0.055 0.108
2.0 0.099 0.196
5.0 0.193 0.383
7.5 0.244 0.488
10.0 0.280 0.560
15.0 0.333 0.665
20.0 0.365 0.733
30.0 0.407 0.815

to obtain the linear model

y = b0 + b1x y = [E]0

r
x = 1

[S]
b0 = 1

k2
b1 = Km

k2
(1.272)

Let us number each experiment in the table as k = 1, 2, . . . , N and let values of x and y for
experiment k be x[k] and y[k] respectively. Then, using the laws of matrix multiplication, we
can write

Xb =

1 x [1]

1 x [2]

: :
1 x [N]

[

b0

b1

]
=

y[1]

y[2]

:
y[N]

 = y (1.273)

By multiplying each side by XT we obtain a system of equations for the coefficients b0, b1

that fit the linear model to the data,

XT Xb = XT y (1.274)

Using this linear regression technique, compute the values of k2 and Km that fit the rate
data. Plot for each [E]0 the data of r vs. [S] along with the curve from the fitted model.

1.B.3. Consider reaction and diffusion of a species A in a thin catalyst slab of thickness
B. Inside the slab, the concentration field of A is governed at steady state by a diffusion
equation with a source term from a first-order chemical reaction,

0 = DA
d2cA

dx2
− kcA (1.275)

The catalyst slab is in contact with a gas phase, with a partial pressure of A of pA. At the
solid–gas interfaces at x = ±B/2, the local concentration of A in the slab is in equilibrium
with the gas phase, providing the boundary conditions

cA(B/2) = cA(−B/2) = HA pA (1.276)

Write the boundary value problem in dimensionless form to reduce the number of inde-
pendent parameters, and solve using the finite difference method. Plot the dimensionless
concentration profiles for various values of the dimensionless parameter(s). Make sure to

60 1 Linear algebra

increase the number of grid points until you no longer see a significant effect upon the
solution.

1.B.4. When solving by finite differences the Poisson equation, −∇2ϕ = f , in d dimensions
on a regular hypercube grid of N points in each direction, the A matrix has the following
nonzero elements in each row (for �x j = 1),

A(k, k) = 2d A(k, k ± N m) = −1 m = 0, 1, . . . , d − 1 (1.277)

For 2-D, 3-D, and 4-D grids generate the resulting A matrix for various N (for higher d, you
might only be able to use very small N). For each d, plot as functions of N the numbers of
nonzero elements in A and in the Cholesky factor R. Show also the spy plots of A and R for
the largest N value considered for each d. Using cputime, plot as well the computational
time required to solve Aϕ = b, b being a vector of all ones, both by the “\” operator and by
Cholesky factorization. NOTE High dimension boundary value problems do indeed arise
in practice, especially when one is computing the positional and orientational distribution
of objects.

1.C.1. Consider the following boundary value problem involving two coupled fields gov-
erned by linear differential equations,

−d2ϕ

dx2
= 1+ ψ(x) − d2ψ

dx2
= ϕ(x) on 0 ≤ x ≤ 1

(1.278)
BC1 ϕ(0) = 0 ϕ(1) = 0
BC2 ψ(0) = 0 ψ(1) = 0

We wish to solve this problem numerically using the method of finite differences for a
uniform grid of points x j , j = 1, 2, . . . , N , in the interior of the domain, as was done in
the flow example for a single field. We compute numerically the field values at each point,
ϕ(x j) = ϕ j and ψ(x j) = ψ j , by solving through elimination the resulting linear algebraic
system.

Which of the following ways of stacking the unknowns into a single vector do you
recommend using? Explain your reasoning.

x =

ϕ1

ϕ2

:
ϕN

ψ1

ψ2

:
ψN

or x =

ϕ1

ψ1

ϕ2

ψ2

:
ϕN

ψN

(1.279)

Write a MATLAB program to solve the boundary value problem and plot the solution.

2 Nonlinear algebraic systems

When a set of algebraic equations is nonlinear, there are no general uniqueness and existence
criteria, and solution can be quite difficult, even for sets of equations that appear simple.
This chapter discusses iterative techniques, in which we make an initial guess of the solution
that is refined by solving successive sets of linear equations. Hopefully, this sequence of
estimates converges to a solution. These methods are first introduced for a single nonlinear
algebraic equation, and then extended to systems of multiple nonlinear equations. The use
of MATLAB nonlinear algebraic solvers is demonstrated.

Existence and uniqueness of solutions to a nonlinear
algebraic equation

A single linear algebraic equation, ax = b, is easily solved, and the condition for existence
and uniqueness of the solution x = b/a, a �= 0, is trivial. For a single nonlinear algebraic
equation

f (x) = 0 (2.1)

there is, in general, no way to tell a priori whether a solution exists, and if so, whether it is
unique. It is easy to identify nonlinear algebraic equations with multiple real roots,

f (x) = (x − 3)(x − 2)(x − 1) = x3 − 6x2 + 11x − 6 (2.2)

with only a single real root,

f (x) = (x − 3)(x − i)(x + i) = x3 − 3x2 + x − 3 (2.3)

or with no real roots at all,

f (x) = 3x4 + 2x2 + 1 (2.4)

Typically, we are presented with a nonlinear function that is not simple to factorize, and
so we know nothing about the number of real solutions. The methods described in this
chapter are designed to search for a real solution starting from an initial guess and will be
demonstrated on systems with varying numbers of solutions.

61

62 2 Nonlinear algebraic systems

Iterative methods and the use of Taylor series

The techniques that we will use are iterative. We start with some initial guess x[0] of the
solution, and apply an algorithm to refine this guess to generate a sequence x[1], x[2], . . . that
hopefully converges to a solution xs with f (xs) = 0; i.e.,

lim
k→∞

∣∣∣x [k] − xs

∣∣∣ = 0 (2.5)

We first consider Newton’s method, an iterative technique that is based on the use of Taylor
series expansions. As Taylor series are used extensively in numerical mathematics, we
briefly review their use.

Let us say that we have some function f (x) that we wish to represent as a polynomial in
the vicinity of some point x0,

f (x) =
∞∑

m=0

am(x − x0)m ∀ x in |x − x0|< � (2.6)

Given only information of the function at x0 – the value of the function itself plus the
values of all of its derivatives (we assume derivatives of f (x) to all orders exist at x0), what
coefficients a0, a1, . . . should we use to match the polynomial to f (x)? First, we see that

f (x0) =
∞∑

m=0

am(x0 − x0)m =
∞∑

m=0

am(0)m = a0 (2.7)

so that

f (x) = f (x0)+
∞∑

m=1

am(x − x0)m (2.8)

We differentiate to obtain

d f

dx

∣∣∣∣
x0

=
∞∑

m=1

mam(x − x0)m−1

∣∣∣∣∣
x0

= a1 +
∞∑

m=2

mam(0)m−1 = a1 (2.9)

Taking yet another derivative yields

d2 f

dx2

∣∣∣∣
x0

=
∞∑

m=2

m(m − 1)am(x − x0)m−2

∣∣∣∣∣
x0

= 2a2 +
∞∑

m=3

m(m − 1)am(0)m−2 (2.10)

Continuing this process, we find that if all derivatives to infinite order of f (x) exist at x0,
we may represent the function as the infinite series

f (x) = f (x0)+ d f

dx

∣∣∣∣
x0

(x − x0)+ 1

2!

d2 f

dx2

∣∣∣∣
x0

(x − x0)2 + 1

3!

d3 f

dx3

∣∣∣∣
x0

(x − x0)3 + · · ·
(2.11)

If we only wish to approximate the function in the vicinity of x0, we can truncate the series
at order n:

f (x) =
n∑

m=0

1

m!

dm f

dxm

∣∣∣∣∣
x0

(x − x0)m + Rn(x) (2.12)

Newton’s method for a single equation 63

where the truncation error is

Rn(x) = 1

n!

dn f

dxn

∣∣∣∣
ζ

(x − x0)n for some ζ ∈ [x0, x] (2.13)

When |x − x0| is very small,

|x − x0| � |x − x0|2 � |x − x0|3 � · · · (2.14)

and we expect that, unless the higher-order derivatives become very large at x0, the truncated
expansion should be a reasonable description of the local behavior of f (x) near x0. The
smaller the truncation order, in general, the nearer that we will have to be to x0 for the
approximation to be accurate.

Newton’s method for a single equation

We now use this truncated Taylor series to develop an iterative technique for solving a non-
linear algebraic equation f (x) = 0 known as Newton’s method. To start Newton’s method,
we make an initial guess x[0] of the solution that we hope is close to the true value xs where
f (xs) = 0. We use a Taylor series to approximate f (x) in the vicinity of x[0],

f (x) = f
(
x [0]

)+ d f

dx

∣∣∣∣
x [0]

(
x − x [0]

)+ 1

2!

d2 f

dx2

∣∣∣∣
x [0]

(
x − x [0]

)2 + · · · (2.15)

At the solution, f (xs) = 0, and the Taylor series yields

0 = f
(
x [0]

)+ d f

dx

∣∣∣∣
x [0]

(
xs − x [0]

)+ 1

2!

d2 f

dx2

∣∣∣∣
x [0]

(
xs − x [0]

)2 + · · · (2.16)

Now, if x[0] is sufficiently close to xs, then∣∣xs − x [0]
∣∣� ∣∣xs − x [0]

∣∣2 � ∣∣xs − x [0]
∣∣3 � · · · (2.17)

In this case, as long as the first derivative is nonzero at x[0], we obtain a reasonable approx-
imation of the solution, x[1], from the rule

0 = f
(
x [0]

)+ d f

dx

∣∣∣∣
x [0]

(
x [1] − x [0]

)
(2.18)

Successive application of this rule yields Newton’s method for solving a single nonlinear
algebraic equation,

x [k+1] = x [k] − f
(
x [k]

)
f (1)

(
x [k]

) (2.19)

where we have used the notation f (m)(x) for the mth derivative of f (x). The iterations are
stopped when the function value satisfies∣∣ f

(
x [k]

)∣∣ ≤ δabs and/or
∣∣ f

(
x [k]

)∣∣ ≤ δrel

∣∣ f
(
x [0]

)∣∣ (2.20)

64 2 Nonlinear algebraic systems

Table 2.1 Performance of Newton’s method
for f (x) = (x − 3)(x − i)(x + i)

x[0] 1 2 4 10

x[1] −1 7 3.3200 7.0064
x[2] −0.2 5.1132 3.0013 5.1558
x[3] 1.2345 3.9367 3.0000 3.9621
x[4] −1.1938 3.2894 3.0000 3.3016
x[5] −0.3761 3.0401 3 3.0432
x[6] 0.6707 3.0009 3.0011
x[7] −1.3458 3.0000 3.0000
x[8] −0.5037 3.0000 3.0000
x[9] 0.4146 3.0000 3.0000
x[10] −2.7029 3 3

Performance of Newton’s method for a single equation

We demonstrate the performance of Newton’s method for various cubic polynomials, starting
with one that possesses only a single real root,

f (x) = (x − 3)(x − i)(x + i) = x3 − 3x2 + x − 3 (2.21)

In Table 2.1, the trajectories of Newton’s method are presented starting from various values
of the initial guess, x[0]. We see that the number of iterations required to converge to the
solution at x = 3 depends strongly upon the initial guess. To see why this is so, we will
examine graphically the progress of Newton’s method. In Figure 2.1, we plot the function
and its first derivative in the vicinity of the solution. Both of these functions seem rather
uncomplicated, so why does Newton’s method converge so erratically for this example?
The reason lies in the fact that the update function

u
(
x [k]

) = x [k+1] − x [k] (2.22)

involves the ratio of two functions,

u(x) = − f (x)

f (1)(x)
(2.23)

Because the derivative of f (x) is zero at two locations, u(x) blows up to ±∞ at these
points, leading to large, erratic steps when the estimates are in the vicinity of such “flat”
points in f (x). Figure 2.2 plots the update function in the vicinity of the solution and
the number of iterations required for convergence to a specified accuracy, as a function
of the initial guess. In the top plot, the solid line is u(x) vs. x and the dots are the
converged solutions xs vs. the initial guess x[0]. The bottom graph shows the number of
iterations required for convergence vs. x[0]. Even for this simple cubic polynomial, New-
ton’s method may take large steps far away from the true solution, making convergence
extremely slow for some choices of the initial guess. This is a general characteristic of New-
ton’s method – the convergence properties depend strongly upon the choice of the initial
guess.

Newton’s method for a single equation 65

2

2

1

1

1

1

1 1 2 2

d
d

a

1 1 2 2

stin at

at ints

Figure 2.1 Plot of (a) the function and (b) the first derivative with a single real root, f (x) = (x −
3) (x − i) (x + i).

1 1 2 2
initia ess

1 1 2 2
initia ess

1

2

ere are neativ e
carries e wtn s etd
ar awa r
e re cn verin

 ve et

 ve rita initia esses
cn vere t

ne
r

 it
er

at
in

s
t a

e
 1

1
cn

ve
re

d
re

st
 d

ts

Figure 2.2 Update function and effect of initial guess on convergence, f (x) = (x − 3) (x − i) (x +
i). In the upper plot, the line is u(x) vs. x and the dots indicate the converged result of Newton’s
method vs. x[0].

We next consider the performance of Newton’s method for a system with multiple real
roots to ask the question: is there any clear relation between the choice of initial guess and
the identity of the root that is found? Consider the cubic polynomial

f (x) = (x − 3)(x − 2)(x − 1) = x3 − 6x2 + 11x − 6 (2.24)

66 2 Nonlinear algebraic systems

2

2

stin at 1

stin at 2

stin at

1 1 2 2

Figure 2.3 Cubic polynomial f (x) = (x − 3) (x − 2) (x − 1).

The function is plotted in Figure 2.3, showing the positions of three real roots. Note that this
function has “flat points” where f (1)(x) = 0 near 1.4 and 2.6, where we expect Newton’s
method to behave erratically.

The performance of Newton’s method for this example can be understood by considering
the plot of the update function in Figure 2.4 (plotted as a solid line). In addition to this plot,
for various values of the initial guess along the x-axis, the values of the corresponding
solution found are plotted along the y-axis as dots. For initial guesses that are less than 1,
the update function is positive and Newton’s method moves towards the right to find the
solution x = 1. Similarly, above 3, Newton’s method moves to the left to find the solution
at x = 3.

In 1 ≤ x ≤ 3, however, the behavior is more complex. Near an initial guess of 1.5,
Newton’s method finds the root at x = 3 before entering a window in which it finds the
root at x = 2 (and at least once more returns to x = 1 briefly). This unusual behavior of
the convergence of Newton’s method can be understood from the locations of divergence of
the update function. For an initial guess of 1.5, a large positive value of the update function
generates a new estimate x[1] that is far to the right, and so the trajectory enters the region
where the solution at x = 3 is obtained. For slightly larger values of the initial guess, there
is a brief window in which the positive, but only moderately large, value of the update
function generates a new estimate x[1] in the vicinity of 2.5, where the large negative u(x [1])
carries Newton’s method far to the left for x[2] so that the solution x = 1 is found. Even for
such a simple cubic polynomial, we see that Newton’s method can yield erratic behavior
and return different roots depending sensitively upon the choice of initial guess.

We also see from this example that there are many initial guesses that will identify the
roots at x = 1 and x = 3, but that there exists only a small window of initial guesses that

Newton’s method for a single equation 67

2

1

1

2

cn vered
stins

 ve rit

 ve et
 ve et

 ve rit

are
eads initia
ess ar t
rit t ind

1 2

initia ess

st
in

Figure 2.4 Update function (line) of Newton’s method for various initial guesses for f (x) = (x − 3)
(x − 2) (x − 1). Converged solutions are plotted as dots vs. the initial guess.

return the root at x = 2. This demonstrates another feature of nonlinear equations: it is
usually very difficult to identify all solutions, and while guess after guess may yield one of
some particular set of solutions, this does not guarantee that there are no other solutions
waiting to be found. We describe here a simple technique to search for additional solutions.
Let us say that we have identified the roots at x = 1 and x = 3, but want to look for
additional solutions. We can factor these roots out formally,

f (x) = (x − 1)(x − 3)g(x) (2.25)

and then apply Newton’s method to solve

g(x) = f (x)

(x − 1)(x − 3)
= 0 (2.26)

Here, because f (x) is a polynomial, we can obtain g(x) analytically. In general, this is
not possible, and g(x) must be defined as above, in a form that behaves poorly (∼0/0) at
x = 1 and x = 3. Care must be taken to avoid these regions, or to provide an upper limit
on the allowable magnitude of g(x) to avoid numerical overflow. As Figure 2.5 shows, this
technique finds the third root at x = 2 from any initial guess except close to x = 1 and
x = 3 where the algorithm terminates without convergence.

Formal convergence properties of Newton’s method for a
single equation

We now consider the convergence properties of Newton’s method more formally. We have
seen that when the initial guess is not very close to a solution, Newton’s method behaves

68 2 Nonlinear algebraic systems

2

2

1

1

2
1 1 2 2

initia ess

1 1 2 2
initia ess

 − − 2

initia esses n w cn vere t 2

ne
r

 it
er

at
in

s
t a

e
 1

1
st

in

Figure 2.5 Convergence of a simple factoring method to find remaining root at x = 2 for f (x) =
(x − 3) (x − 2) (x − 1).

erratically. Let us assume now that the current estimate of the solution is indeed near a
solution. Then, can we say anything about the rate at which successive Newton iterations
converge upon the true solution value? First, we write a Taylor series of f (x) about the
current estimate x[k],

f
(
x [k] + ε

) = f
(
x [k]

)+ ε f (1)
(
x [k]

)+ 1

2!
ε2 f (2)

(
x [k]

)+ 1

3!
ε3 f (3)

(
x [k]

)+ · · · (2.27)

We define the error at iteration k as

εk ≡ xs − x [k] (2.28)

If the current estimate is very close to the true solution, εk is very small and

|εk | �
∣∣ε2

k

∣∣� ∣∣ε3
k

∣∣� · · · (2.29)

Therefore, if we can neglect terms of third order and higher in εk , we can approximate

f
(
x [k] + εk

) = f (xs) = 0 ≈ f
(
x [k]

)+ εk f (1)
(
x [k]

)+ 1
2ε2

k f (2)
(
x [k]

)
(2.30)

Now, from Newton’s method (2.19), we have

(
x [k+1] − xs

) = (
x [k] − xs

)− f
(
x [k]

)
f (1)

(
x [k]

) (2.31)

The secant method 69

so that the errors at successive iterations are related by

εk+1 = εk +
f
(
x [k]

)
f (1)

(
x [k]

) (2.32)

If we divide the Taylor series approximation (2.30) by f (1) (x [k]),

0 ≈ f
(
x [k]

)
f (1)

(
x [k]

) + εk + ε2
k

f (2)
(
x [k]

)
2 f (1)

(
x [k]

) (2.33)

and use (2.32), we obtain

εk+1 = −ε2
k

f (2)
(
x [k]

)
2 f (1)

(
x [k]

) (2.34)

This means that if we are very close to the solution, Newton’s method converges quadrat-
ically. For example, assume that we are sufficiently close to a solution for this quadratic
convergence to hold and that |εk | = 10−1. Then, the sequence of errors in the next few
iterations is approximately

|εk+1| = 10−2 |εk+2| = 10−4 |εk+3| = 10−8 |εk+4| = 10−16 (2.35)

Once Newton’s method is close enough to the real solution for the second-order Taylor series
approximation to be accurate, the sequence of estimates converges very rapidly (quadrati-
cally) to the solution.

The secant method

Each iteration of Newton’s method requires not only an evaluation of the function, but
also an evaluation of the first derivative. In some cases, the algebraic function may be of
such complexity that it is inconvenient to derive the analytical form of the derivative. One
alternative would be to use a finite difference approximation,

d f

dx

∣∣∣∣
x [k]

≈ f
(
x [k] + ε

)− f
(
x [k]

)
ε

ε ≈ √
eps (2.36)

where eps is the machine precision. This approach, however, requires two function evalua-
tions per iteration, so that in practice it is more common to use the secant method, in which
the value of the derivative is approximated by the two most recent function evaluations,

d f

dx

∣∣∣∣
x [k]

≈ f
(
x [k]

)− f
(
x [k−1]

)
x [k] − x [k−1]

(2.37)

70 2 Nonlinear algebraic systems

Thus, the new estimate is

x [k+1] = x [k] − f
(
x [k]

)[
x [k] − x [k−1]

]
f
(
x [k]

)− f
(
x [k−1]

) (2.38)

In this method, only one new function evaluation per iteration is necessary. In comparison
to Newton’s method, there is no need to evaluate analytically the value of the first derivative;
however, convergence is slower than with Newton’s method,

|εk+1| ≈ C |εk |1.618 (2.39)

When an analytical expression for the first derivative is available, Newton’s method is
preferred due to its faster, quadratic rate of convergence; otherwise, the secant method is
suggested. In practice, the loss of quadratic convergence is not as bad as one might expect,
for, in general, it is found only very near the solution.

Bracketing and bisection methods

It is far easier to find a suitable initial guess for a single equation than it is for multiple
equations. For a single equation, we can locate the region of a solution by scanning only a
single variable x; however, with even only two equations, for each trial value of x1, there
are infinitely many possible guesses of x2. Only for a single equation does it become really
practical to try various initial guesses in some planned, rigorous manner to search for a
solution.

Let us say that we have two values of x, x[k] and x[k+1], and their function values, f (x [k])
and f (x [k+1]). If the signs of the two function values differ and f (x) is continuous, we then
know that f (x) must cross f = 0 at least once between x[k] and x[k+1]. Therefore, f (x) must
have at least one solution in [x[k], x[k+1]]. Once we have found such a segment that brackets
a solution, we can narrow the bracketing range by setting the bisecting point x [k+2] =
(x [k] + x [k+1])/2 and computing f (x [k+2]). We then select two consecutive members of
{x[k], x[k+1], x[k+2]} whose signs of f (x) differ, and repeat the bisection. This approach is
robust, but rather slow.

Once the bracket becomes sufficiently small that we feel that Newton’s method or the
secant method should be able to find the solution, we switch to one of those more efficient
procedures. If this fails, we continue with bisection until the initial guess is sufficiently close
for the iterative method to succeed. In MATLAB, the routine fzero takes such an approach.
For further discussion of iterative methods to solve a single equation f (x) = 0, consult
Press et al. (1992) and Quateroni et al. (2000).

Finding complex solutions

The previous discussion focused upon methods for finding solutions to f (x) = 0, where
both x and f (x) are real. While this is generally the case in engineering and scientific

Systems of multiple nonlinear algebraic equations 71

V reactr
 ve

inet

cj, in

cj

A B
B

C
C D

tet

Figure 2.6 CSTR with two chemical reactions.

practice, we may wish to identify complex solutions to complex-valued functions. To do
so, we write x as

x = a + ib a = Re{x} ∈ � b = Im{x} ∈ � (2.40)

and compute a and b by solving the two coupled real-valued equations

Re{ f (a + ib)} = 0 Im{ f (a + ib)} = 0 (2.41)

Thus, techniques for treating multiple nonlinear algebraic equations are required in this
instance.

Systems of multiple nonlinear algebraic equations

We now extend Newton’s method to solve a set of N simultaneous nonlinear algebraic
equations for N unknowns

f1(x1, x2, . . . , xN) = 0
f2(x1, x2, . . . , xN) = 0

(2.42)...
fN (x1, x2, . . . , xN) = 0

More compactly, we define the state vector of unknowns

x = [x1 x2 . . . xN]T (2.43)

and write the system of equations as

f (x) = 0 (2.44)

As an example, consider a continuous stirred-tank reactor (CSTR), operated isothermally,
with negligible volume change due to reaction, in overflow mode with a constant fluid
volume V, and with the two chemical reactions (assumed elementary) (Figure 2.6)

A + B → C rR1 = k1cAcB

C + B → D rR2 = k2cCcB (2.45)

72 2 Nonlinear algebraic systems

In a CSTR, we assume that the reactor is so perfectly mixed that the concentration field of
each species is spatially uniform. That is, every point in the reactor has the same concen-
tration of each species, governed by the set of mass balances

d

dt
(V cA) = υ(cA, in − cA)+ V (−k1cAcB)

d

dt
(V cB) = υ(cB, in − cB)+ V (−k1cAcB − k2cCcB)

(2.46)
d

dt
(V cC) = υ(cC, in − cC)+ V (k1cAcB − k2cCcB)

d

dt
(V cD) = υ(cD, in − cD)+ V (k2cCcB)

υ is the volumetric flow rate of the feed and outlet streams, V is the fixed reactor volume,
cj is the concentration of species j in the reactor (and in the output stream), cj,in is the
concentration of species j in the inlet stream, and k1, k2 are the rate constants of each
chemical reaction.

At steady state, the time derivatives on the left are zero, and the concentrations of each
species within the reactor satisfy a set of four nonlinear algebraic equations. To put these
equations in standard form, we define the unknowns

x1 = cA x2 = cB x3 = cC x4 = cD (2.47)

to obtain the algebraic system

υ(cA, in − x1)+ V (−k1x1x2) = 0
υ(cB, in − x2)+ V (−k1x1x2 − k2x3x2) = 0 (2.48)

υ(cC, in − x3)+ V (k1x1x2 − k2x3x2) = 0
υ(cD, in − x4)+ V (k2x3x2) = 0

We see that in addition to the four unknowns, there are a number of other model parameters
whose values we must know before attempting to solve the equations. We collect these
quantities into a parameter vector Θ:

Θ = [υ V k1 k2 cA, in cB, in cC, in cD, in]T (2.49)

and write the set of nonlinear algebraic equations as

f (x; Θ) = 0 (2.50)

Newton’s method for multiple nonlinear equations

Again we use a Taylor series expansion to obtain Newton’s method, representing the ith
function in the vicinity of the current estimate x[k] as

fi (x) = fi

(
x[k]

)+ N∑
m=1

∂ fi

∂xm

∣∣∣∣∣
x[k]

(
xm − x [k]

m

)
(2.51)

+ 1

2

N∑
m=1

N∑
n=1

(
xm − x [k]

m

) ∂2 fi

∂xm∂xn

∣∣∣∣∣
x[k]

(
xn − x [k]

n

)+ · · ·

Newton’s method for multiple nonlinear equations 73

Assuming that x[k] is sufficiently close to the true solution xs that we introduce little error
by dropping the terms of quadratic and higher order,

fi (xs) = 0 ≈ fi

(
x[k]

)+ N∑
m=1

∂ fi

∂xm

∣∣∣∣∣
x[k]

(
xs,m − x [k]

m

)
(2.52)

For convenience, we collect the first partial derivatives into the N × N Jacobian matrix
J [k] = J (x[k]), with elements

J [k]
im = ∂ fi

∂xm

∣∣∣∣
x[k]

(2.53)

The truncated Taylor series expansion then becomes

0 ≈ fi

(
x[k]

)+ N∑
m=1

J [k]
im

(
xs,m − x [k]

m

)
(2.54)

We thus generate the new estimate of the solution, x[k+1] ≈ xs by solving the set of linear
algebraic equations

0 = fi

(
x[k]

)+ N∑
m=1

J [k]
im

(
x [k+1]

m − x [k]
m

)
(2.55)

Defining the update vector

�x[k] ≡ x[k+1] − x[k] (2.56)

the set of Newton update linear equations is

N∑
m=1

J [k]
im �x [k]

m = − fi

(
x[k]

)
(2.57)

We recognize the term on the left-hand side as the ith component of a matrix–vector product
and write the linear system as

J [k]�x[k] = − f
(
x[k]

)
(2.58)

At each Newton iteration, we must solve a linear system of N equations, e.g. through
Gaussian elimination. This procedure is repeated until the norm of the function vector
becomes smaller than some tolerance value,∥∥ f

(
x[k]

)∥∥ ≤ δabs and/or
∥∥ f

(
x[k]

)∥∥ ≤ δrel

∥∥ f
(
x[0]

)‖ (2.59)

The choice of norm is somewhat subjective, but a common selection is∥∥ f
(
x[k]

)∥∥
∞ = max{| f1| , | f2| , . . . , | fN |} (2.60)

As was the case for a single equation, convergence in the close vicinity of the solution is
quadratic. The proof is somewhat more involved with multiple equations, and is presented
in the supplemental material in the accompanying website.

74 2 Nonlinear algebraic systems

1

2

2

1

1 2
22

at west int 2 s is a stin

Figure 2.7 3-D surface plot of ‖ f ‖2 for a system with a solution at (3,4).

Performance of Newton’s method for an example system
of two equations

Let us next consider the performance of Newton’s method for the following system of two
equations with a real solution at xs = [3 4]T:

f1(x1, x2) = 3x3
1 + 4x2

2 − 145 = 0
(2.61)f2(x1, x2) = 4x2

1 − x3
2 + 28 = 0

The Jacobian matrix for this system is

J =

∂ f1

∂x1

∂ f1

∂x2

∂ f2

∂x1

∂ f2

∂x2

 =

[
9x2

1 8x2

8x1 −3x2
2

]
(2.62)

Figure 2.7 shows a surface plot of the 2-norm of the function vector, ‖ f (x)‖2, vs. (x1, x2).
The solution is a global minimum of the 2-norm, and we would like Newton’s method to
march steadily “downhill” on this surface until we reach a minimum elevation that we hope
is a solution with ‖ f ‖2 = 0. To understand the performance of Newton’s method, we need
to keep the shape of this 2-norm surface in mind. Figure 2.8 presents a contour plot of
‖ f (x)‖2 with lines drawn at constant values of the 2-norm and arrows pointing in the local
direction of increasing 2-norm. “Steep” regions of rapidly varying 2-norm are identified by
larger arrows and contour lines that are close together.

Figure 2.9 overlays upon this contour plot of the 2-norm, a trajectory of solution estimates
obtained from Newton’s method with an initial guess of (2,2). Newton’s method converges
in seven iterations to the desired accuracy; however, the first step carries the estimate
too far into a region of increasing 2-norm. Such a step is not very helpful for finding a
solution.

Newton’s method for multiple nonlinear equations 75

2

2

2 2

2

1

stin at

Figure 2.8 Contour plot of ‖ f ‖2 for a system with a solution at (3,4).

2

2

2 2

2

1

initia ess 1 2 2 2 n er iter atins

Figure 2.9 Trajectory of Newton’s method with the initial guess (2,2).

Figure 2.10 repeats this plot for an initial guess of (1,1). While Newton’s method again
converges (now in eleven iterations to the desired accuracy), a much larger step into a region
of high 2-norm is made. With an initial guess of (2,–1), such a departure is even more
pronounced (Figure 2.11); however, convergence to the desired accuracy still occurs after
21 iterations. While Newton’s method does converge (at least for these initial guesses), it

76 2 Nonlinear algebraic systems

1

1

1

2

2 2

2

1

initia ess 1 1 2 1 n er iter atins 11

Figure 2.10 Trajectory of Newton’s method with the initial guess (1,1).

1

1

1

12

1

2

2

2 1 1

2

1

initia ess 1 2 2 1 n er iter atins 21

Figure 2.11 Trajectory of Newton’s method with the initial guess (2,−1).

certainly appears as if the choice of updates could be improved, by moderating the tendency
of the algorithm to make large, erratic steps. A reduced-step algorithm is proposed later
that avoids generating these erratic steps and makes Newton’s method more robust. These
plots are generated by Newton 2D test.m.

Estimating the Jacobian and quasi-Newton methods 77

Estimating the Jacobian and quasi-Newton methods

With Newton’s method, to update our estimate of the solution we need to evaluate at x[k] the
function vector f (x[k]) and the Jacobian matrix J [k]. In many instances, we do not wish to
take the time to derive an analytical form for the elements of the Jacobian matrix and code a
subroutine to evaluate them. It is often easier merely to provide a subroutine that evaluates
the function vector, so we consider now how the human effort of computing the Jacobian can
be eliminated. One approach gaining use is to employ an automatic differentiation program,
a routine that reads the code that we write to evaluate the function vector and automatically
generates additional code that evaluates the Jacobian matrix. Here, we describe two more
traditional approaches: finite difference approximations and the use of approximate Jacobian
matrices generated by the past history of function evaluations.

In these methods, we use not the exact value of the Jacobian matrix, but rather some
approximation

B[k] ≈ J
(
x[k]

)
(2.63)

We then compute the update by solving the linear system

B[k]�x[k] = − f
(
x[k]

)
(2.64)

The use of such an approximation does not change the value of the solution that we obtain,
as at a solution xs, f (xs) = 0 and �x = (B[k])−1 f (xs) = 0 no matter the value of B[k]

(provided that it is nonsingular). This allows some freedom in the choice of B[k] to balance
accuracy in the approximation of the true Jacobian against computational efficiency.

The most straight forward approach to approximate the Jacobian is to use a finite differ-
ence approximation

∂ fm

∂xn

∣∣∣∣
x[k]

= J [k]
mn ≈ B[k]

mn =
fm

(
x[k] + εe[n]

)− fm

(
x[k]

)
ε

(2.65)

e[n] is the unit vector comprising all zeros except for a value of 1 for the nth compo-
nent, e[n]

j = δ jn . Here ε is some small number, typically chosen for reasons of numerical
accuracy to be the square root of the machine precision, ε ≈ √

eps. This finite difference
approximation can yield quite accurate approximations of the Jacobian, but at the cost of
N additional function evaluations per Newton iteration. When the Jacobian has a known
sparsity structure, the number of function evaluations may be reduced, but, in general, the
overhead associated with these additional function evaluations can be quite significant for
large systems.

To avoid the numerous and costly function evaluations required by the finite differ-
ence method, various quasi-Newton methods have been developed in which the approx-
imation B[k] of the Jacobian is constructed from the recent values of the function vector
f (x[k]), f (x[k−1]), f (x[k−2]), We describe here the popular Broyden’s method (Broyden,
1965) for updating the estimate of the Jacobian, which can be considered an extension of
the secant method to systems of multiple equations.

78 2 Nonlinear algebraic systems

Let B[k] be the current estimate of the Jacobian. We update the solution estimate by the
rule

B[k]�x[k] = − f
(
x[k]

)
(2.66)

x[k+1] ← x[k] +�x[k]

At x[k+1], we evaluate the function value f (x[k+1]), but to obtain the new update by solving
the linear system

B[k+1]�x[k+1] = − f
(
x[k+1]

)
(2.67)

we need a new Jacobian estimate B[k+1].
Broyden’s method generates B[k+1] from B[k], f (x[k]), and f (x[k+1]) using the path

integral formula

f
(
x[k+1]

) = f
(
x[k]

)+ ∫ 1

0
J
(
x[k] + s�x[k]

)
�x[k]ds (2.68)

and its approximation for very small �x[k], obtained by neglecting the variation in the
Jacobian,

f
(
x[k+1]

) ≈ f
(
x[k]

)+ J
(
x[k+1]

)
�x[k] (2.69)

In Broyden’s method, we require that B[k+1] exactly satisfies this approximation:

f
(
x[k+1]

) = f
(
x[k]

)+ B[k+1]�x[k] (2.70)

Using (2.64), this becomes

f
(
x[k+1]

)+ B[k]�x[k] = B[k+1]�x[k] (2.71)

We postmultiply by (�x[k])T and use the identity BvvT = |v|2 B to write

f
(
x[k+1]

)(
�x[k]

)T + ∣∣�x[k]
∣∣2 B[k] = ∣∣�x[k]

∣∣2 B[k+1] (2.72)

Division by the scalar |�x[k]|2 yields the Broyden rank-one update rule

B[k+1] = B[k] + f
(
x[k+1]

)(
�x[k]

)T∣∣�x[k]
∣∣2 (2.73)

To start, we typically use a crude approximation of the Jacobian such as B[0] = I . In general,
convergence is slower with Broyden’s method than with Newton’s method. Note, however,
that the quadratic convergence of Newton’s method is only obtained near the solution,
and that this update formula does not require the N additional function evaluations of the
finite difference approximation. This reduction in workload per Newton iteration makes
the Broyden method a popular choice when we do not supply a routine to evaluate the
Jacobian matrix analytically. For more information on quasi-Newton methods and Jacobian
estimation, consult Nocedal & Wright (1999).

Robust reduced-step Newton method 79

Robust reduced-step Newton method

In the study of the performance of Newton’s method for a simple 2-D system, we have seen
that far away from the solution, the update steps are large and lie in erratic directions. The
efficiency and robustness of Newton’s method (and quasi-Newton variations such as that of
Broyden) are improved dramatically through use of a reduced-step algorithm, in which only
a fraction of the update vector is accepted. The full update vector is generated by solving
the linear system

B[k]�x[k] = − f
(
x[k]

)
(2.74)

but now only a fraction α[k] ∈ [0, 1] of the full step is accepted,

x[k+1] = x[k] + α[k]�x[k] (2.75)

This fractional step is chosen such that the norm of the function vector at the new estimate
is smaller than at the old one, yielding the descent criterion∥∥ f

(
x[k+1]

)∥∥ = ∥∥ f
(
x[k] + α[k]�x[k]

)∥∥ <
∥∥ f

(
x[k]

)∥∥ (2.76)

Since a solution xs has f (xs) = 0, xs is a global minimum of ‖ f (x)‖. So as long as we are
decreasing the value of the norm, we feel that we are making good progress towards finding
a solution.

We now ask two questions:

Is there always some α[k] > 0 such that the descent criterion using the 2-norm, ‖v‖2
2 = v · v,

is satisfied?
Under what conditions will this method find a limiting point that is not a solution?

To answer the first question, we use the path integral relation

f
(
x[k] + ε�x[k]

) = f
(
x[k]

)+ ∫ ε

0
J
(
x[k] + s�x[k]

)
�x[k]ds (2.77)

which we may approximate for very small ε by neglecting the variation in the Jacobian as

f
(
x[k] + ε�x[k]

) ≈ f
(
x[k]

)+ εJ
(
x[k]

)
�x[k] (2.78)

Taking the dot product of this equation with itself yields∥∥ f
(
x[k] + ε�x[k]

)∥∥2

2
= [

f
(
x[k]

)+ εJ
(
x[k]

)
�x[k]

] · [f
(
x[k]

)+ εJ
(
x[k]

)
�x[k]

]
(2.79)

Retaining the terms up to first order in ε yields∥∥ f
(
x[k] + ε�x[k]

)∥∥2

2
≈ ∥∥ f

(
x[k]

)∥∥2

2
+ 2ε f

(
x[k]

) · J
(
x[k]

)
�x[k] (2.80)

Assuming B[k] is nonsingular, �x[k] = −(B[k])−1 f (x[k]), and∥∥ f
(
x[k] + ε�x[k]

)∥∥2

2
≈ ∥∥ f

(
x[k]

)∥∥2

2
− 2ε f

(
x[k]

) · [J
(
x[k]

)(
B[k]

)−1]
f
(
x[k]

)
(2.81)

80 2 Nonlinear algebraic systems

i te ve is d wni at e ver ste
r tis initia int w e wi

ind a ase stin

at int || f ||2,
t nt a stin
since f (x) ≠ 0 || f ||2 = 0

stin wit
f (x) = 0

Figure 2.12 The reduced-step norms reduction method may also find a local minimum of the norm
that is not a solution.

Now, if the exact Jacobian is used, B[k] = J [k], then J
(
x[k]

)(
B[k]

)−1 = I and

∥∥ f
(
x[k] + ε�x[k]

)∥∥2

2
≈ ∥∥ f

(
x[k]

)∥∥2

2
− 2ε f

(
x[k]

) · f
(
x[k]

) = (1− 2ε)
∥∥ f

(
x[k]

)∥∥2

2
(2.82)

For 0 < ε � 1, ‖ f (x[k] + ε�x[k])‖2
2 < ‖ f (x[k])‖2

2; therefore, when using the exact
Jacobian, there always exists some very small, positive value of the fractional step length that
results in a decrease of the norm, and so it will be possible always to find some α[k] ∈ [0, 1]
that satisfies the descent criterion. Even if we do not use the exact Jacobian, but only an
approximation of it, as long as the matrix J (x[k])(B[k])−1 exists and is positive-definite, it
is possible to find an α[k] ∈ [0, 1] that satisfies the descent criterion.

We now consider the second question. As Figure 2.12 demonstrates, merely reducing
the norm of the cost function is not sufficient to ensure that we end up at a solution, since
we could find instead a local minimum in the cost function that is not a solution (the norm
value is nonzero).

We can identify the condition necessary for such a “false solution” through the relation

∇‖ f ‖2
2 = 2J T f (2.83)

At a flat point in the 2-norm, we must have J Tf = 0, and the only way that this can occur
if we are not at a solution is if det(J T) = det(J) = 0.

With reduced-step Newton algorithms, one of two results generally occurs. Either we
converge to a solution (eventually), or the method locates a “false solution” where the
Jacobian is singular. If the latter occurs, the iterations stop since we cannot solve the linear
update equations and we must start again using a different initial guess.

The backtracking weak line search method

A common method to generate the fractional step length in a reduced-step algorithm is
the backtracking weak line search. First, we attempt to take the full Newton step. If this

The trust-region Newton method 81

step satisfies the descent criterion (the 2-norm is reduced), it is accepted. Otherwise, the
fractional step length is reduced by one-half iteratively until the descent criterion is satisfied.
The algorithm of the reduced-step Newton method with a weak line search is

Guess x[0]; compute f(x[0]); initialize B[0]

for k = 0, 1, 2, . . . , kmax

if
∥∥ f (x[k])

∥∥
2
≤ δtol, STOP and ACCEPT solution xs ≈ x[k]

solve linear system B[k]�x[k] = − f (x[k])
for m = 0, 1, 2, . . . , mmax

α[k] = 2−m

x[k+1] = x[k] + α[k]�x[k]

calculate f
(
x[k+1]

)
if
∥∥ f (x[k+1])

∥∥2

2

∥∥ f (x[k])
∥∥2

2
, STOP m iterations and accept α[k]

end of m = 0, 1, 2, . . . , mmax for loop
end of k = 0, 1, 2, . . . , kmax for loop

Performance of the reduced-step Newton method for an example
system of two equations

We now revisit the example system

f1(x1, x2) = 3x3
1 + 4x2

2 − 145 = 0
(2.84)

f2(x1, x2) = 4x2
1 + x3

2 + 28 = 0

that has a real solution at xs = [3 4]T, using now the reduced-step Newton method. Once
again, the trajectories of the solution estimates are plotted as connected circles superimposed
on the contour plot of the 2-norm. Figure 2.13 shows the trajectory for the guess (2,1) that
converges in six iterations without the erratic first step of the full-step Newton trajectory
in Figure 2.9. With the guess (1,1), the reduced-step trajectory of Figure 2.14 likewise
shows better performance than the full-step trajectory of Figure 2.10. But, with a guess of
(2, −1), Figure 2.15 demonstrates that the reduced-step method can “hang up” by taking
only very small steps when the direction of the Newton step lies nearly perpendicular to the
local gradient of the 2-norm. Then, the trust-region Newton method, described below, does
better as it varies concurrently with both the step length and direction.

The trust-region Newton method

As noted in the example above, the reduced-step Newton method can fail when the search
direction is nearly perpendicular to the steepest descent direction so that only very short
steps are taken. This problem originates from the fact that the direction of the full Newton
step is always accepted; we reduce only the magnitude of the step to attain reduction of

82 2 Nonlinear algebraic systems

2

2

2 2

2

1

Figure 2.13 Trajectory of reduced-step Newton method with the guess (2,2) (number of iterations =
6).

2

2

2 2

2

1

Figure 2.14 Trajectory of reduced-step Newton method with the guess (1,1) (number of iterations =
6).

the function norm. The trust-region Newton method is more robust, especially when the
Jacobian is nearly singular, because it simultaneously varies both the step direction and
the step magnitude to find an acceptable reduction of the function norm. Being a form of
numerical optimization, a detailed discussion of this algorithm is postponed until Chapter
5; however, we present here the basic concepts.

Solving nonlinear algebraic systems in MATLAB 83

2

2

2 2

2

1

Figure 2.15 Trajectory of reduced-step Newton method with the guess (2,−1).

The full Newton step at x[k] satisfies the linear system

B[k] p(n) = − f
(
x[k]

)
(2.85)

Therefore, it is also a global minimum of the quadratic cost function

m[k](p) = 1
2

∥∥B[k] p + f
(
x[k]

) ∥∥2

2
(2.86)

= 1
2

∥∥ f
(
x[k]

)∥∥2

2
+ f

(
x[k]

) · B[k] p + 1
2 pT

(
B[k]

)T
B[k] p

If we were to apply a minimization algorithm to m[k](p), we would find the full Newton step
p(n). We note, however, that p(n) becomes erratic when we are far from the solution. We
therefore expect there to be some trust radius �[k] (that we modify at each iteration) such
that we expect the quadratic model m[k](p) to be a valid measure of locating the solution
only if ‖p‖2 < �[k]. We obtain the update vector by solving the constrained problem

min m[k](p) subject to |p| < �[k] (2.87)

This technique is the basis of the MATLAB routine fsolve, whose use is demonstrated
below. A further discussion of the trust-region method, and the efficient dogleg method of
implementing it, is provided in Chapter 5.

Solving nonlinear algebraic systems in MATLAB

Although MATLAB contains a built-in routine, fsolve, for solving systems of multiple
nonlinear algebraic equations (using the trust-region Newton method discussed above), it
is part of the Optimization Toolkit and so is not available in every installation of MATLAB.
reduced Newton.m implements the reduced-step Newton algorithm, and can be used if

84 2 Nonlinear algebraic systems

fsolve is unavailable. For further information on the use of reduced Newton.m, consult
the help section at the beginning of that file.

The syntax for using fsolve to find an approximate solution x and its function value f
(near zero) is

[x, f] = fsolve(fun name, x0, Options, P1, P2, . . .);

fun name is the name of the function that returns the function vector,

f = fun name(x, P1, P2, . . .);

or, if optionally it returns the Jacobian matrix as well,

[f, Jac] = fun name(x, P1, P2, . . .);

P1, P2, . . . are optional parameters passed through fsolve. x0 is the initial guess. Options is a
data structure managed by the command optimset that allows us to modify the performance
of fsolve. Unless the number of equations is very large, it is best to start with

Options = optimset(‘LargeScale’, ‘off’);

We then can add additional fields to override the default options (type help optimset for
further details). For example, if your routine returns as a second argument the Jacobian
matrix evaluated at x, let fsolve know this by

Options = optimset(Options, ‘Jacobian’, ‘on’);

For the example system (2.61), with an easily-computed Jacobian,

f1(x1, x2) = 3x3
1 + 4x2

2 − 145 = 0

f2(x1, x2) = 4x2
1 + x3

2 + 28 = 0
J =

[
9x2

1 8x2

8x1 −3x2
2

]
(2.88)

the following code computes the solution, starting from x[0] = [1 1]T,

Options = optimset(‘LargeScale’, ‘off’, ‘Jacobian’, ‘on’);
x = fsolve(‘calc f ex1’,x0,Options),

calc f ex1.m returns the value of the function vector and the Jacobian,

% calc f ex1.m

function [f, Jac] = calc f ex1(x);
f = zeros(2,1);
f(1) = 3∗x(1)∧3 + 4∗x(2)∧2 - 145;
f(2) = 4∗x(1)∧2-x(2)∧3 + 28;

Jac = zeros(2,2);
Jac(1,1) = 9∗x(1)∧2; Jac(1,2) = 8∗x(2);
Jac(2,1) = 8∗x(1); Jac(2,2) = - 3∗x(2)∧2;

return ;

Example. 1-D laminar flow 85

We could also use @calc f ex1 as the first fsolve argument rather than ‘calc f ex1’. For
the CSTR example, with the two chemical reactions

A+ B → C rR1 = k1cAcB

C+ B → D rR2 = k2cCcB (2.89)

the steady-state concentrations

x1 = cA x2 = cB x3 = cC x4 = cD (2.90)

are obtained by solving the nonlinear algebraic system

υ(cA, in − x1)+ V (−k1x1x2) = 0
υ(cB, in − x2)+ V (−k1x1x2 − k2x3x2) = 0
υ(cC, in − x3)+ V (k1x1x2 − k2x3x2) = 0 (2.91)

υ(cD, in − x4)+ V (k2x3x2) = 0

CSTR SS ex1.m prompts the user for the values of the parameters and computes the con-
centrations, using the inlet concentrations as the initial guesses. For the parameter values

υ = 1 V = 100 k1 = 1 k2 = 1
cA, in = 1 cB, in = 2 cC, in = 0 cD, in = 0 (2.92)

running this program yields the output

Steady state concentrations:
[A] = 0.056614
[B] = 0.16664
[C] = 0.053409
[D] = 0.88998
infinity norm of f = 2.0326e-009

Example. 1-D laminar flow of a shear-thinning polymer melt

Again, let us consider laminar flow between two parallel plates separated by a distance B,
but now for simplicity we assume both plates to be stationary. Previously in Chapter 1, we
employed finite differences to compute the velocity profile vx (y) for a Newtonian fluid. We
now consider the same problem, but for a nonNewtonian fluid whose viscosity decreases
with increasing shear-rate, common behavior for many polymer solutions and melts. In this
problem, the (y-dependent) shear-rate is

γ̇ (y) =
∣∣∣∣dvx

dy

∣∣∣∣
y

(2.93)

A common model of shear-thinning behavior is that of Carreau and Yasuda (Yasuda et al.,
1981), for which the shear-rate dependent viscosity η(γ̇) is

η(γ̇)− η∞
η0 − η∞

= [1+ (λγ̇)a](n−1)/a (2.94)

86 2 Nonlinear algebraic systems

1

1

1

1 2

1 −1 1

sear r ate in s−1

vi
sc

si
t i

n
a

s

1 1 1 2

Figure 2.16 Shear-dependent viscosity of poly(styrene) melt at 453 K, estimated from the Carreau–
Yasuda model.

Abdel-Khalik et al. (1974) fit the poly(styrene) melt data at 453 K of Ballenger et al. (1971)
to obtain

η∞ = 0 η0 = 1.48× 104 Pa s λ = 1.04 s n = 0.398 a = 2 (2.95)

The predicted shear-thinning behavior is shown in Figure 2.16.
With this nonlinear dependence of the viscosity upon the local shear-rate, numerical

solution of the equation of motion is now required. For 1-D laminar flow, the equation of
motion

ρ
Dv

Dt
= ρ

∂

∂t
v+ ρ(v ·∇v) = ∇ · τ −∇P (2.96)

reduces to

0 = dτyx

dy
− d P

dx
τyx = η(γ̇)

dvx

dy
(2.97)

τ yx is the shear-stress and P is the dynamic pressure. For a constant dynamic pressure
gradient, the equation of motion

dτyx

dy
=
(

�P

�x

)
(2.98)

yields a shear-stress that varies linearly with y,

τyx (y) = τyx (0)+
(

�P

�x

)
y (2.99)

By symmetry, the velocity gradient mid-way between the plates is zero, and thus the shear-
stress at y = B/2 is zero. Hence,

τyx

(
B

2

)
= 0 = τyx (0)+

(
�P

�x

)(
B

2

)
(2.100)

Example. 1-D laminar flow 87

and the linear shear-stress profile is

τyx (y) =
(

�P

�x

)(
y − B

2

)
(2.101)

Using the Carreau–Yasuda constitutive equation, this yields a nonlinear first-order differ-
ential equation for the velocity field

η(γ̇)
dvx

dy
=
(

�P

�x

)(
y − B

2

)
(2.102)

To solve this system, we again use finite differences, and place evenly spaced points between
the plates,

yk = k(�y) �y = B

(N + 1)
(2.103)

The local velocity and shear-rate at yk are

vk = vx (yk) γ̇k =
∣∣∣∣dvx

dy

∣∣∣∣
yk

(2.104)

At each grid point, we require (2.102) to be satisfied locally,

η(γ̇k)
dvx

dy

∣∣∣∣
yk

=
(

�P

�x

)(
yk − B

2

)
(2.105)

The finite difference approximations

dvx

dy

∣∣∣∣
yk

≈ vk − vk−1

(�y)
(2.106)

yield for each point except the first a nonlinear algebraic equation

fk = η(γ̇k)

[
vk − vk−1

(�y)

]
−
(

�P

�x

)(
yk − B

2

)
= 0 k = 2, 3, . . . , N (2.107)

where

γ̇k =
∣∣∣∣vk − vk−1

�y

∣∣∣∣ (2.108)

At the first grid point, we use the boundary condition vx(0) = 0 to obtain

f1 = η(γ̇1)

[
v1

�y

]
−
(

�P

�x

)(
y1 − B

2

)
= 0 γ̇1 =

∣∣∣∣ v1

�y

∣∣∣∣ (2.109)

The Jacobian is sparse as each row has at most two nonzero elements,

Jk,k−1 = ∂ fk

∂vk−1
= η(γ̇k)

[−1

�y

]
+

[
vk − vk−1

(�y)

]
dη

dγ̇

∣∣∣∣
γ̇k

dγ̇k

dvk−1

∣∣∣∣
vk−1,vk (2.110)

Jk,k = ∂ fk

∂vk
= η(γ̇k)

[
1

�y

]
+

[
vk − vk−1

(�y)

]
dη

dγ̇

∣∣∣∣
γ̇k

dγ̇k

dvk

∣∣∣∣
vk−1,vk

We could reduce the effort required to solve the problem by providing the Jacobian as a
second output argument of our function routine. In polymer flow 1D.m, fsolve is provided
with a sparse matrix that is nonzero only at those elements that are nonzero in the Jacobian,
through the JacobPattern option in optimset. This sparsity information helps fsolve to

88 2 Nonlinear algebraic systems

2

2
v s

−1 −
τ a

1

1 2
searr ate s −1

1
viscsit a s

1

1

2

1

2

1

2

1

× 1

a

dc

Figure 2.17 Profiles for laminar flow of poly(styrene) melt at 453 K between two parallel plates
separated by a distance of 10 cm. The imposed pressure gradient is −1 184 000 Pa/m, which in the
absence of shear-thinning yields a centerline velocity of 10 cm/s: (a) velocity profile of Newtonian
(dash-dot) and shear-thinning (solid) fluids; (b) linear shear-stress profile; (c) shear-rate profile; (d)
viscosity profile.

estimate the Jacobian more effectively, while avoiding the analytical work necessary to
evaluate the second terms on the right-hand side in (2.110).

For an initial guess, we use the analytical profile for a Newtonian fluid with the zero
shear-rate viscosity

vx (y) = y(y − B)

2η0

(
�P

�x

)
(2.111)

The computed velocity, shear-stress, shear-rate, and viscosity profiles are shown in Figure
2.17 for the case of plates separated by 10 cm, with a pressure gradient that yields a centerline
velocity of 10 cm/s in the absence of shear-thinning. Here, shear-thinning results in a
five-fold increase in centerline velocity. Rather than a parabolic profile, the shear-thinning
fluid has large velocity gradients near the walls, yet a relatively flat center “plug-flow”
region.

Homotopy

Above, we have used fsolve to solve the steady-state CSTR model

υ(cA, in − x1)+ V (−k1x1x2) = 0
υ(cB, in − x2)+ V (−k1x1x2 − k2x3x2) = 0

(2.112)
υ(cC, in − x3)+ V (k1x1x2 − k2x3x2) = 0

υ(cD, in − x4)+ V (k2x3x2) = 0

Example. Steady-state modeling 89

In addition to coding a routine to return the function vector, we also had to provide an initial
guess of the solution. Above, we used simply the inlet concentration values, but ideally, we
want our initial guess to be as close as possible to the true solution for Newton’s method
to be robust and efficient. Here, we were able to find a solution with this initial guess, but
this does not always occur. We thus may have to propose many different guesses, perhaps
at random, before we find a solution.

We can take a more systematic approach to the generation of initial guesses by using
some insight into the nature of the equations through a technique known as homotopy. If
we study the structure of the equations for the CSTR model, we note that the nonlinearity
is associated with the reaction terms. In the limit that the residence time, V/υ, goes to
zero (i.e., if we make the flow rate very large), the convective terms will be much larger in
magnitude than the reaction terms, and the system of equations becomes

υ(cA,in − x1) ≈ 0
υ(cB,in − x2) ≈ 0

(2.113)
υ(cC,in − x3) ≈ 0
υ(cD,in − x4) ≈ 0

As υ/V →∞, the reactor concentrations are very near those of the inlet, providing very
natural and accurate initial guesses,

x1 ≈ cA, in x2 ≈ cB, in x3 ≈ cC, in x4 ≈ cD, in (2.114)

If we were to find it difficult to generate an initial guess that converges to a solution for some
smaller value of υ/V , a good strategy would be to solve the system first with a very large
value of the flow rate, for which Newton’s method converges quickly. Then, to compute the
concentrations at the flow rate of interest, we decrease the flow rate value incrementally,
and for each new value, use as an initial guess the solution from the previous step.

This approach, known as homotopy, allows us to move gradually from a region of parame-
ter space in which it is easy to solve the set of equations to a region where solution is difficult,
but always to operate Newton’s method in the vicinity of a solution where convergence is
robust and rapid. With a bit of insight into the structure of the equations, this approach is very
powerful. An efficient implementation of homotopy, arc-length continuation, is described
in Chapter 4. CSTR 2D NAE.m demonstrates the use of the simple homotopy algorithm
described above to solve the steady-state CSTR system.

Example. Steady-state modeling of a condensation
polymerization reactor

The most common form of nylon, nylon-6,6, is made by polycondensation of the two
monomers hexamethylene diamine (HMD) and adipic acid (ADA). The first step in the
reaction sequence is the condensation of two monomers to form a dimer with an amide
linkage, −CONH−, and a water molecule (the condensate).

HOOC(CH2)4COOH+ H2N(CH2)6NH2

⇔ HOOC(CH2)4CONH(CH2)6NH2 + H2O

90 2 Nonlinear algebraic systems

The double-headed arrow denotes that this reaction is reversible, with an equilibrium con-
stant on the order of 100. The dimer still has functional groups on each end, and so may
continue to react to produce even larger molecules. If the water is removed by evaporation to
drive the equilibrium to the right, polymer chains with molecular weights of∼20–30 kg/mol
may be produced. To achieve very high molecular weights, we use equimolar amounts of
each monomer so that the stoichiometry between the acid ends (−COOH) and the base ends
(−NH2) is balanced.

We describe the hierarchy of reactions in polycondensation using the following notation.
Let [Px] be the total concentration of chains in the system that contain x monomer units,
i.e., are x-mers. We then have the following hierarchy of reactions:

P1 + P1 ⇔ P2 +W
P1 + P2 ⇔ P3 +W
P2 + P2 ⇔ P4 +W (2.115)
P1 + P3 ⇔ P4 +W
P2 + P3 ⇔ P5 +W

The number of reactions and species in the system quickly grows very large. We can,
however, derive simple equations that describe the average chain length and breadth of the
chain length distribution with only a few state variables. We define the kth moment of the
chain length distribution, λk, as

λk =
∞∑

m=1

mk[Pm] (2.116)

Of particular interest are the three leading moments

λ0 =
∞∑

m=1

[Pm] λ1 =
∞∑

m=1

m[Pm] λ2 =
∞∑

m=1

m2[Pm] (2.117)

From these three values, we can calculate the number-averaged chain length, x̄n = λ1/λ0,
and the weight-averaged chain length, x̄w = λ2/λ1. Since the weight-averaged chain length
biases more the contributions of the larger chains, x̄w ≥ x̄n, with the equality holding
only if all chains are of the same length. The ratio of these two averages, Z = x̄w/x̄n, the
polydispersity, provides a simple measure of the breadth of the chain length distribution.
The larger the polydispersity, the greater the disparity in the lengths (molecular weights) of
individual chains. We now need only calculate the rates of change of these three moments
to predict, for given polymerization conditions, the characteristics of the polymer produced.
For further discussion of the use of population balances and moment equations in polymer
reaction engineering, consult Ray (1972) and Dotson et al. (1996).

Rate equations for polycondensation

We obtain rate equations for these moments by counting how each x-mer species is produced
or consumed in each individual reaction in the hierarchy above. First, we represent the
sequence of reactions (2.115) as

Pm + Pn ⇔ Pm+n +W (2.118)

Example. Steady-state modeling 91

that should be read as “A chain with m monomer units reacts reversibly with a chain
containing n monomer units, to produce a combined chain containing m+n monomer units
and a single condensate (water) molecule.” We then combine the contributions from each
individual reaction in the forward and reverse directions to calculate the net rate of change
of each species’ concentration and those of the leading moments.

Forward condensation reaction

Pm + Pn → Pm+n +W (2.119)

The net rate of change of m-mer from forward condensation is

rPm (fc) = −2kfc[Pm]
∞∑

n=1

[Pn]+ kfc

m−1∑
n=1

[Pn][Pm−n] (2.120)

The first term is the rate of disappearance of m-mer from reaction with all other species, and
the second term is the rate of m-mer creation through the reaction of two smaller species.
The rate of change of the kth moment is

rλk (fc) =
∞∑

m=1

mkrPm (fc) (2.121)

After some mathematics, we get for the three leading moments of interest,

rλ0(fc) = −kfcλ
2
0 rλ1(fc) = 0 rλ2(fc) = 2kfcλ

2
1 (2.122)

Reverse condensation reaction

The reverse reaction

Pm+n +W → Pm + Pn (2.123)

has a rate constant kfc/Keq, where Keq is the equilibrium constant. The net rate of change
of m-mer concentration is

rPm (rc) = kfc K−1
eq [W]

{
2

∞∑
n=m+1

[Pn]− (m − 1)[Pm]

}
(2.124)

The first term is the rate of production of m-mer through the scission of larger molecules, and
the second term is the rate at which m-mer disappears when one of its linkages is attacked
by water. The rates of change of the three leading moments from reverse condensation are

rλ0(rc) = kfc K−1
eq [W](λ1 − λ0) rλ1(rc) = 0

rλ2(rc) = kfc K−1
eq [W]

(
1
3λ1 − λ3

)
(2.125)

From these results, we have the following rates of change of each leading moment due to
forward and reverse condensation:

rλ0 = −kfcλ
2
0 + kfc K−1

eq [W](λ1 − λ0) rλ1 = 0

rλ2 = 2kfcλ
2
1 + kfc K−1

eq [W]
(

1
3λ1 − λ3

)
(2.126)

92 2 Nonlinear algebraic systems

The first moment is unchanged by the reaction, as is expected since the total number of
monomer units is conserved. The equation for the second moment requires that we know
the value of the third moment. To obtain a closed set of equations, it is common to postulate
a mathematical form of the chain length distribution (see Chapter 7) to relate the unknown
λ3 to the known λ0, λ1, λ2. This approach yields the closure approximation

λ3 ≈
λ2
(
2λ2λ0 − λ2

1

)
λ1λ0

(2.127)

Steady-state model of a stirred-tank polycondensation reactor

We now use these results to model the steady-state behavior of a polycondensation CSTR.
The mole balance on m-mer is

d

dt
{M[Pm]} = F (in)[Pm](in) − F[Pm]+ MrPm (2.128)

Here, we represent concentrations on a per-mass basis, due to volume changes during
reaction. M is the total mass of the reaction medium in the reactor. F(in) and F are the inlet
and outlet mass flow rates.

The first term on the right-hand side of (2.128) is the flux of m-mer into the reactor from
the inlet stream, the second term is the flux of m-mer out of the reactor, and the last term
is the rate of change of m-mer concentration due to chemical reaction. Multiplying this
equation by mk and summing over all m yields

d

dt

{
M

∞∑
m=1

mk[Pm]

}
= F (in)

∞∑
m=1

mk[Pm](in) − F
∞∑

m=1

mk[Pm]+ M
∞∑

m=1

mkrPm (2.129)

This is simply the balance for the kth moment, and at steady state yields

d

dt
{Mλk} = 0 = F (in)λ

(in)
k − Fλk + Mrλk (2.130)

With λ1 held constant (as it is unchanged by the reaction), we have

d

dt
{Mλ0} = 0 = F (in)λ

(in)
0 − Fλ0 − Mkfcλ

2
0 + Mkfc K−1

eq [W](λ1 − λ0)

d

dt
{Mλ2} = 0 = F (in)λ

(in)
2 − Fλ2 + 2Mkfcλ

2
1 + Mkfc K−1

eq [W]
(

1
3λ1 − λ3

)
(2.131)

and for λ3 use the auxiliary moment closure equation

λ3 ≈
λ2
(
2λ2λ0 − λ2

1

)
λ1λ0

(2.132)

We contact the reaction medium with a purge gas stream to remove the water, such that the
total mass balance on the reaction medium is

F = F (in) − (kma)M MW[W] (2.133)

Example. Steady-state modeling 93

MW is the molecular weight of water, a is the interfacial mass transfer area per unit mass
in the reactor and km is a mass transfer coefficient. The mole balance on water is

d

dt
{M[W]} = 0 = F (in)[W](in) − F[W]− (kma)M[W]+ MrW (2.134)

rW = −rλ0 is the rate of generation of condensate due to reaction, yielding

0 = F (in)[W](in) − F[W]− (kma)M[W]+ Mkfcλ
2
0 − Mkfc K−1

eq [W](λ1 − λ0) (2.135)

We next define the dimensionless quantities

µ
(in)
k = λ

(in)
k

λ1
µk = λk

λ1
ω = [W]

λ1
φ = F

F (in)
(2.136)

the dimensionless Damköhler number

Da = kfc Mλ1

F (in)
(2.137)

and the dimensionless strength of mass transfer

γ = (kma)M

F (in)
(2.138)

such that the three dimensionless balances for {µ0, µ2, ω} are

f1 = µ
(in)
0 − φµ0 − (Da)µ2

0 + (Da)K−1
eq ω(1− µ0) = 0

f2 = µ
(in)
2 − φµ2 + 2(Da)+ (Da)K−1

eq ω
(

1
3 − µ3

) = 0 (2.139)

f3 = ω(in) − φω − γω + (Da)µ2
0 − (Da)K−1

eq ω(1− µ0) = 0

In addition to these three coupled nonlinear equations, we have two auxiliary equations from
the moment closure approximation and the overall mass balance on the reaction medium,

µ3 ≈ µ2(2µ2µ0 − 1)

µ0
φ = 1− γ ζω (2.140)

ζ is the molecular weight of a condensate relative to that of a monomer,

ζ = λ1 MW (2.141)

Effect of Da and mass transfer upon polymer chain length

polycond CSTR.m plots the number-averaged chain length x̄n = µ1/µ0, the polydisper-
sity, Z = x̄w/x̄n = µ2µ0, the dimensionless condensate concentration ω, and the rela-
tive outlet flow rate φ as functions of Da and γ , for input values of the fixed parame-
ters {ζ, Keq, ω(in), µ

(in)
0 , µ

(in)
2 }. The calculations are performed for a monomer-fed reactor

with ζ = 0.2, Keq = 102, ω(in) = 0, and µ
(in)
0 = µ

(in)
2 = 1.

For this system, convergence of Newton’s method can be difficult, especially at high Da.
Homotopy is used; for each γ the sequence of simulations is started with the lowest Da,
for which the inlet values are reasonable guesses. Convergence can still be difficult at high
Da, thus we use here an additional convergence trick: we simulate an approximate set of

94 2 Nonlinear algebraic systems

2

1

2 2
−2 − −2

2 2
−2 − −2

2

2

2

−2 − −2
2

2

1 a 1 γ

1 a 1 γ

1 a 1 γ

1 a 1 γ

−2 − −2
2

n
ω f

a

c d

Figure 2.18 Effect of Da and mass transfer efficiency upon operation of a monomer-fed CSTR for
polycondensation: (a) number average chain length; (b) polydispersity; (c) dimensionless condensate
concentration; (d) output mass flow rate relative to input value.

dynamics forward in time, to approach robustly the vicinity of a stable steady state before
beginning Newton’s method. Defining a dimensionless time, τ = (F (in)t)/M , we have the
dynamics

dµ0

dτ
= f1

dµ2

dτ
= f2

dω

dτ
= f3 (2.142)

Dynamic simulation of ordinary differential equation (ODE) systems is discussed in Chapter
4. For now, we merely note that we use ode23s to propagate the dynamics until the function
norm is decreased to a value deemed sufficiently small for the robust start of Newton’s
method.

Figure 2.18 plots x̄n, Z , ω, φ as functions of Da and γ . High-molecular-weight polymer
is achieved only for high values of both Da and γ . At low Da, there is insufficient residence
time in the reactor to achieve much conversion, and at low γ the water is not removed,
limiting the achievable conversion at equilibrium.

Bifurcation analysis

We have stated that we do not in general know the number or even the existence of solutions
to a nonlinear algebraic system. This is true; however, it is possible to identify points at
which the existence properties of the system change through locating bifurcation points;
i.e., choices of parameters at which the Jacobian, evaluated at the solution, is singular.

Bifurcation analysis 95

n stins

1

1

2 2

1

2

ircatin int
cn

tanent ine

2

1

tw stins

di Θ

di Θ

Figure 2.19 Bifurcation point separating the region in parameter space that has two solutions from
that which has none. At the bifurcation point, both curves share a common tangent at contact.

Consider a simple case of two nonlinear equations whose solution(s) depend upon some
parameter vector Θ.

f1(x1, x2; Θ) = 0
f2(x1, x2; Θ) = 0 (2.143)

As a solution xs must satisfy both equations, it appears as a point of intersection between
the curves f1 = 0 and f2 = 0. Let us modify the parameter vector Θ to move the locations
of these curves in x space as shown in Figure 2.19. Initially, there are no solutions, but as the
curves approach each other, they overlap to generate two solutions. Consider the particular
parameter vector Θc at which the curves first touch. Clearly this is an important choice
of parameter(s), as it separates the region of parameter space in which there are solutions
from that in which there are none. If the curves just touch at Θc and do not cross, they must
be parallel to each other at the point of contact. That is, the slopes of the tangent lines in
(x1, x2) space of the two curves f1 = 0 and f2 = 0 must be equal at the point of contact,
which we note is a solution. At Θc, with solution xs(Θc), if S = dx2/dx1 is the common
tangent slope,

O =
(

∂ f1

∂x1

)
+

(
∂ f1

∂x2

)
S =

(
∂ f2

∂x1

)
+

(
∂ f2

∂x2

)
S (2.144)

Therefore, the Jacobian evaluated at the solution,

J (xs(Θc)) =

∂ f1

∂x1

∣∣∣∣
xs(Θc)

∂ f1

∂x2

∣∣∣∣
xs(Θc)

∂ f2

∂x1

∣∣∣∣
xs(Θc)

∂ f2

∂x2

∣∣∣∣
xs(Θc)

 (2.145)

is singular (i.e. Θc is a bifurcation point).

96 2 Nonlinear algebraic systems

We can search for a bifurcation point along some path Θ(λ) in parameter space by solving
the augmented set of N + 1 equations for xs(Θc) and the value of λc, Θ(λc) = Θc, at
which the bifurcation occurs,

f (xs; Θ(λ)) = 0
|J (xs; Θ(λ))| = 0 (2.146)

Computing the locations of bifurcation points allows us to carve up parameter space into
different regions, to find one in which one or more real solutions do indeed exist.

Example. Bifurcation points of a simple quadratic equation

As an example, consider the quadratic equation

f (x) = x2 + θx + 1 (2.147)

that has solutions at

x = −θ ±√
θ2 − 4

2
(2.148)

Obviously, this equation has two real solutions for θ2 > 4 and no real solutions within
−2 < θ < 2. There exist two bifurcation points at θ = ±2 at which the two real solutions
are degenerate. Let us consider the bifurcation point at θ = 2 for which the solution is
xs = −1. The Jacobian of this system (here a 1×1 matrix, a scalar) is

J (x, θ) = ∂ f

∂x
= 2x + θ (2.149)

At each bifurcation point θ = ±2, the Jacobian is singular, as

J (x, θ) = 2

[
−θ ±√

θ2 − 4

2

]
+ θ = ±

√
θ2 − 4 (2.150)

Here, we can compute the bifurcation point analytically, but let us see how we might do so
numerically (as we would have to do for more complex systems). Let us say that we wish
to look for bifurcation points along the path θ (λ) = 4λ, where we encompass in the range
0 ≤ λ ≤ 1 the points 0 ≤ θ(λ) ≤ 4. Obviously, there will be a bifurcation point at λ = 0.5,
but if we did not know this, we could try different values of λ as the initial guess and use
Newton’s method in (x,λ) space to solve the augmented system

f1(x, λ) = f (x) = x2 + θ(λ)x + 1 = 0
f2(x, λ) = det[J (x, λ)] = 2x + θ (λ) = 0 (2.151)

The Newton update rule is [
x [k+1]

λ[k+1]

]
=

[
x [k]

λ[k]

]
+

[
�x [k]

�λ[k]

]
(2.152)

Bifurcation analysis 97

where

(
∂ f1

∂x

∣∣∣∣
[k]

) (
∂ f1

∂λ

∣∣∣∣
[k]

)
(

∂ f2

∂x

∣∣∣∣
[k]

) (
∂ f2

∂λ

∣∣∣∣
[k]

)

[

�x [k]

�λ[k]

]
=

[− f1(x, λ)
− f2(x, λ)

]
(2.153)

The elements of the Jacobian of the augmented system are

∂ f1

∂x
= ∂

∂x
{x2 + θ (λ)x + 1} = 2x + θ(λ) = 2x + 4λ

∂ f1

∂λ
= ∂

∂λ
{x2 + θ (λ)x + 1} = x

dθ

dλ
= 4x

∂ f2

∂x
= ∂

∂x
{2x + θ (λ)} = 2

∂ f2

∂λ
= ∂

∂λ
{2x + θ (λ)} = dθ

dλ
= 4 (2.154)

Therefore, the augmented Jacobian is

J (a)(x, λ) =
[

(2x + 4λ) (4x)
2 4

]
(2.155)

At the bifurcation point, the augmented Jacobian and its determinant are

J (a)(−1, 0.5) =
[

0 −4
2 4

] ∣∣J (a)
∣∣ = (0)(4)− (2)(−4) = 8 (2.156)

Thus, the augmented Jacobian is not singular at the bifurcation point. Newton’s method
should be able to find it, with a suitable initial guess.

Numerical calculation of bifurcation points

As a more general formulation of the bifurcation point problem, let us search for a bifurcation
point along the linear path in parameter space

Θ(λ) = (1− λ)Θ0 + λΘ1 (2.157)

We apply Newton’s method to the augmented system for xs, λ

f (xs; Θ(λ)) = 0
|J (xs; Θ(λ))| = 0 (2.158)

Clearly, as we must compute the determinant of the Jacobian at each Newton iteration, and
in general must obtain the Jacobian by finite differences, finding a bifurcation point is more
costly than merely computing the solution for a fixed parameter vector. But, for systems
in which we cannot find a solution to the system at the parameter vector of interest, and
for which we wonder if there exist any solutions at all, bifurcation analysis can provide
useful insight into the existence properties of the system. Also, there are situations, such as
computing the critical points of thermodynamic phase diagrams, in which the locations of
bifurcation points are themselves of direct interest.

98 2 Nonlinear algebraic systems

search bifurcation.m searches for a bifurcation point along a user-defined linear path in
parameter space

Θ(λ) = (1− λ)Θ0 + λΘ1 (2.159)

The program is invoked for the simple quadratic example above by

a = 1; % initial lambda value to try as initial guess
b = 0; % final lambda value to try as initial guess
num lambda = 10; % # of lambda values to try as initial guess
theta 0 = 0; % parameter value at lambda = 0
theta 1 = 4; % parameter value at lambda = 1
x0 = -1.1; % initial guess of solution
fun name = ‘calc f quad’;
[x b,theta b,lambda b,ifound b] = search bifurcation(fun name, . . .

theta 0,theta 1,a,b,x0,num lambda),

where the routine for the function vector of the nonlinear system is

function f = calc f quad(x,theta);
f = x.ˆ2 + theta.*x + 1;
return;

MATLAB summary

The main routine for solving nonlinear algebraic systems f (x) = 0 is fsolve,

x = fsolve(fun name, x0, Options, P1, P2, . . .);

fun name is the name of a routine,

function f = fun name(x, P1, P2, . . .);

that returns the function vector for input x for the system under consideration. x0 is the
initial guess, and P1, P2, . . . are optional model parameters. Options is a data structure
managed by optimset that controls the operation of fsolve, e.g.

Options = optimset(‘LargeScale’, ‘off’, ‘Display’, ‘off’);

If the Jacobian matrix can be computed analytically, we use

Options = optimset(Options, ‘Jacobian’, ‘on’);

and return the Jacobian as a second argument,

function [f, Jac] = fun name(x, P1, P2, . . .);

Other options that will be found to be useful in Chapter 6 are

Options = optimset(Options,’ JacobPattern’, S);

and

Options = optimset(Options, ‘JacobMult’, Jfun name);

Problems 99

In the former option, the user supplies a sparse matrix S whose sparsity pattern (location
of nonzero elements) matches that of the Jacobian. That is, even though the Jacobian may
be difficult to compute analytically, the user can at least specify that only a small subset of
Jacobian elements are known to be nonzero. fsolve can use this information to reduce the
computational burden and memory requirement when generating an approximate Jacobian.
With “JacobMult”, the user supplies the name of a routine that returns the product of the
Jacobian matrix with an input vector. The usefulness of this option will become clearer after
our discussion of iterative methods for solving linear algebraic systems in Chapter 6.

fsolve is part of the Optimization Toolkit, and so is not available in all installations of
MATLAB. If fsolve is unavailable, the provided routine reduced Newton.m can be used in
its place. For a single nonlinear algebraic equation, one may also use fzero, that is called
similarly to fsolve,

x = fzero(fun name, x0, Options, P1, P2, . . .);

Problems

2.A.1. Consider the following system of two nonlinear algebraic equations:

f1(x1, x2) = x3
1 − 3x1x2

2 − x2 + 18 = 0
f2(x1, x2) = x2

1 − 4x2
1 x2 + x3

2 − 2x2
2 + 28 = 0 (2.160)

By hand, compute the Jacobian matrix of this system, and generate the refined estimate x[1]

starting from an initial guess of x[0] = [2 1]T. In the reduced-step Newton method, would
this estimate x[1] be accepted?

2.A.2. Write a MATLAB program to solve the system of Problem 2.A.1.

2.A.3. The terminal velocity vt of a falling sphere in a Newtonian fluid is

vt =
√

4g(ρp − ρf)Dp

3CDρf
(2.161)

ρf is the density of the fluid, ρp is the density of the particle, Dp is the particle diameter, g is
the acceleration due to gravity, and CD is a dimensionless drag coefficient that is a function
of the Reynolds’ number

Re = ρfvt Dp

µf
(2.162)

µf is the viscosity of the fluid. Table 5-22 in Perry & Green (1984) presents values of CD

for various Re, and also provides the correlations

Re < 0.1 CD = 24

Re

0.1 < Re < 1000 CD =
(

24

Re

)
[1+ 0.14(Re)0.70]

1000 < Re < 350 000 CD ≈ 0.445 (2.163)

Re > 1 000 000 CD = 0.19− 8× 104

Re

100 2 Nonlinear algebraic systems

Table 2.2 Drag coefficient for flow around a
smooth sphere at Reynolds’ numbers between
350 000 and 1 000 000. From Table 5–22 of Perry
& Green (1984)

Re CD

350 000 0.396
400 000 0.0891
500 000 0.0799
700 000 0.0945

1 000 000 0.110

Between Reynolds’ numbers of 350 000 and 1 000 000, there is a transient drop in the
drag constant as the boundary layer first becomes turbulent, delaying separation on the
downstream side. In this regime, we may use interpolation (MATLAB function interp1) of
the data in Table 2.2.

Estimate the terminal velocity of a smooth spherical iron particle (density 7850 kg/m3)
in water (density 1000 kg/m3, viscosity 0.001 Pa s) as a function of the particle diameter
(in meters) over the range 0.1 mm to 10 cm.

2.B.1 Consider a CSTR, with the single gas-phase elementary reaction

A+ B → C (2.164)

that has a rate constant k of 0.05 l/(mol/s). The feed stream to the reactor, at a volumetric
flow rate υ0 in liters per second, is at a total pressure P0 = 5 atm. It comprises reactants
A and B, and a nonreacting diluent gas. The partial pressures of the reactants are PA0 =
0.5 atm and PB0 = 0.5 atm. Assume that the ideal gas law holds, and that the reactor is
operated isothermally at 350 K. Assume that the inlet stream is at the same temperature and
pressure as the reactor contents. For a reactor volume of 1000 l, plot the conversion of A as
a function of υ0. Make sure to account for the fact that the total number of moles in the gas
phase decreases with increasing conversion, so that the outlet volumetric flow rate will be
somewhat smaller than υ0 . For further discussion, consult Fogler (1999).

2.B.2. Consider a 1000-l CSTR in which the following reactions are taking place:

A+ B → C rR1 = k1cAcB

C+ B → D rR2 = k2cBcC (2.165)
A → E rR3 = k3cA

We have the following kinetic data

k1(298 K) = 2.1× 10−2 l

mol s
k1(315 K) = 3.6× 10−2 l

mol s

k2(298 K) = 1.5× 10−2 l

mol s
k2(315 K) = 4.5× 10−2 l

mol s
(2.166)

k3(298 K) = 0.00012 s−1 k3(315 K) = 0.00026 s−1

Problems 101

cAs = HA pA cAs = HA pA

cA(x)

DA A → B

−rA = k cA
2

x = −B/2 x = B/2x = 0

Figure 2.20 Reaction and diffusion in a catalyst slab.

We feed a stream at a volumetric flow rate of 0.1 l/s containing A, B, and a diluent solvent,
with cA0 = 0.5 M and varying γ = cB0/cA0. Assuming isothermal operation, and neglecting
any volume change due to reaction, plot the conversion of A as a function of temperature
and γ .

2.B.3. Consider the problem of reaction and diffusion in a slab of catalyst of thickness B
(Figure 2.20). The reaction A → B proceeds within the slab with apparent second-order
kinetics, −rA = kc2

A. At the surface of the slab at x = ±B/2, the concentration of A is in
equilibrium with the external gas phase, cA(±B/2) = cAs = HA pA. Within the slab, the
steady-state concentration field is governed by the reaction–diffusion equation

0 = DA
d2cA

dx2
− kc2

A (2.167)

Convert this problem to dimensionless form to reduce the number of independent parame-
ters. Then, use the finite difference method to convert this boundary value problem into a
set of nonlinear algebraic equations and solve with MATLAB. Plot the dimensionless con-
centration as a function of the remaining adjustable dimensionless parameter(s). To speed
up your calculations, have your function routine return the Jacobian matrix.

2.C.1. In this problem, we consider the thermodynamics of a mixture of n2 moles of linear
polymer chains, each containing x segments, and n1 moles of solvent, each of which is
comparable in size to a single polymer segment. Let n0 = n1 + xn2, so that the volume
fractions of solvent and polymer are

φ1 = n1

n1 + xn2
φ2 = xn2

n1 + xn2
(2.168)

According to Flory–Huggins lattice theory (Flory, 1953), the free energy of mixing for such
a mixture is

�Gmix = �Gcontact
mix − T �Sideal

mix (2.169)

The ideal entropy of mixing is

�Sideal
mix = −R[n1 ln φ1 + n2 ln φ2] (2.170)

102 2 Nonlinear algebraic systems

The contact free energy of mixing is modeled as

�Gcontact
mix = RT n1φ2χ (2.171)

χ is a temperature-dependent dimensionless parameter that is specific to the solvent/polymer
pair, where χkbT is a measure of the free energy penalty paid whenever a solvent molecule is
in contact with a polymer segment, kb being the Boltzmann constant. Usually χ = a + b/T ,
where the contributions are from nonideal entropic and enthalpic effects respectively. As χ

increases, the solvent and polymer segments dislike each other more, resulting eventually
in phase separation.

From this lattice theory, the free energy per mole of solvents and segments, �gmix =
�Gmix/n0, is

�gmix = RT
[
φ1φ2χ − φ1 ln φ1 − φ2

x
ln φ2

]
(2.172)

We see that as the chain length x increases, the polymer contribution to the entropy of mixing
decreases, due to the constraints that neighboring segments always must be next to each
other.

The chemical potentials, with respect to the pure reference states, at constant temperature
and pressure, are

µi − µ0
i =

∂

∂ni
�Gmix

∣∣∣∣
T, P, n j �=i

(2.173)

Using the free energy expression above, we have

µ1 − µ0
1

RT
= ln φ1 +

(
1− 1

x

)
φ2 + χφ2

2

µ2 − µ0
2

RT
= ln φ2 − (x − 1)φ1 + xχφ2

1

(2.174)
At χ = 0 we have only the positive ideal entropy of mixing and �Gmix < 0. As χ increases,
we eventually reach a point where phase separation into two coexisting phases, (I) and (II),
occurs. We wish to compute the properties of the coexisting phases. Let the volume fractions
of solvent in each phase be φ

(I)
1 and φ

(II)
1 . From these values, we compute the volume fraction

of the system occupied by phase (I) from the lever rule

�(I) = φ1 − φ
(II)
1

φ
(I)
1 − φ

(II)
1

(2.175)

To compute φ
(I)
1 and φ

(II)
1 , we equate the chemical potentials in each phase,(

µ
(I)
i − µ0

i

)/(
RT) =(

µ
(II)
i − µ0

i

)
/(RT) i = 1, 2 (2.176)

This yields the following system of two nonlinear algebraic equations

ln φ
(I)
1 +

(
1− 1

x

)(
1− φ

(I)
1

)+ χ
(
1− φ

(I)
1

)2 = ln φ
(II)
1 +

(
1− 1

x

)(
1− φ

(II)
1

)+ χ
(
1− φ

(II)
1

)2

ln
(
1− φ

(I)
1

)− (x − 1)φ(I)
1 + xχ

[
φ

(I)
1

]2 = ln
(
1− φ

(II)
1

)− (x − 1)φ(II)
1 + xχ

[
φ

(II)
1

]2

(2.177)

Problems 103

Clearly φ
(I)
1 = φ

(II)
1 is always a solution; however, for fixed x, as χ increases, there may arise

additional solutions for which φ
(I)
1 �= φ

(II)
1 . If the free energy of this heterogeneous system,

�gheterogeneous
mix = �(I)�g(I)

mix +
(
1−�(I)

)
�g(II)

mix (2.178)

is less than the free energy �gmix for a homogeneous system, phase separation occurs.
Generate a phase diagram, plotting φ

(I)
1 and φ

(II)
1 on the x-axis and χ on the y-axis for chain

lengths of x = 1, 10, 100, 1000.

2.C.2. For the system of Problem 2.C.1, use the concept of a bifurcation point to directly
compute χ c, the critical value of χ , above which phase separation occurs, given an input
value of x. Plot χ c vs. x.

2.C.3. In the polycondensation reactor example above, we reduced the number of equations
by deriving moment equations. This required a closure approximation to estimate the value
of λ3 given λ0, λ1, λ2. Test this approximation by solving the complete set of population
balance equations

0 = F (in)[Pm](in) − F[Pm]+ MrPm (2.179)

where the net rate of generation of m-mer is the sum of (2.120) and (2.124). Solve this set
of nonlinear algebraic equations for m = 1, 2, . . . , Mmax, and increase Mmax until you no
longer see an effect upon the polydispersity. Note that the required values of Mmax might be
very large, as even a small number of moles of such very high-molecular-weight polymer
chains contribute greatly to higher-order moments. Generate the plots of Figure 2.18 for
this full set of population balances and note when the closure approximation (2.127) fails
to give adequate results.

3 Matrix eigenvalue analysis

We now resume our discussion of linear algebra, which previously focused upon the solu-
tion of linear systems Ax = b by Gaussian elimination. The interpretation of A as a linear
transformation was found useful in understanding the existence and uniqueness of solu-
tions. Here, we consider a powerful tool in analyzing the transformational properties of a
matrix, eigenvalue analysis, based upon identifying for a matrix A the eigenvectors w and
corresponding scalar eigenvalues λ such that

Aw = λw (3.1)

We shall encounter numerous situations in which eigenvalue analysis provides insight
into the behavior and performance of an algorithm, or is itself of direct use, as when
estimating the vibrational frequencies of a structure or when calculating the states
of a system in quantum mechanics. The related method of singular value decom-
position (SVD), an extension of eigenvalue analysis to nonsquare matrices, is also
discussed.

Orthogonal matrices

We begin our discussion of eigenvalue analysis by demonstrating how it may be used
to diagnose the transformational properties of a matrix. Here, we consider a 3× 3 real
matrix Q that rotates vectors in �3. We specify the particular rotation that it performs by
designating an orthonormal basis set {u[1], u[2], u[3]} that is obtained from the orthonormal
basis

e[1] =

1

0
0

 e[2] =

0

1
0

 e[3] =

0

0
1

 e[m]

j = δmj (3.2)

by transformation under Q (Figure 3.1),

u[k] = Qe[k] u[j] · u[k] = δ jk (3.3)

Note that we rotate the vectors, not the coordinate system. We now ask:

If we only know the new basis vectors, can we determine the elements of Q?
Given only Q, is there any way that we can recognize that it performs a rotation, and if so,

can we extract from Q any information about the particular rotation that it represents?

104

A specific example of an orthogonal matrix 105

To answer the first question, we write u[k] = Qe[k] explicitly,

u[k] =

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

e[k]
1

e[k]
2

e[k]
3

 =

Q11e[k]
1 + Q12e[k]

2 + Q13e[k]
3

Q21e[k]
1 + Q22e[k]

2 + Q23e[k]
3

Q31e[k]
1 + Q32e[k]

2 + Q33e[k]
3

 (3.4)

Using e[m]
j = δmj , we have

u[1] =

 Q11

Q21

Q31

 u[2] =

 Q12

Q22

Q32

 u[3] =

 Q13

Q23

Q33

 (3.5)

Taking the dot products of each e[j] with each u[k] yields

Q jk = e[j] · u[k] (3.6)

If we want instead to rotate the coordinate system without changing the vectors, we apply the
inverse rotation Q−1. To derive the elements of Q−1, we have merely to swap e[j] ⇔ u[j]

to obtain

Q−1
jk = u[j] · e[k] = e[k] · u[j] = Qkj = QT

jk (3.7)

We thus see that for this “rotation matrix” Q,

Q−1 = QT (3.8)

As a rotation transforms one orthogonal basis into another, a matrix satisfying (3.8) is said
to be orthogonal. Note that matrices that perform improper rotations, i.e. that combine a
rotation with a mirror reflection, also map orthogonal bases into other ones, and also satisfy
(3.8).

A specific example of an orthogonal matrix

We now consider a specific Q that performs a counter-clockwise rotation (in the 1–2 plane)
by an angle α around e[3] (Figure 3.1),

Q =

 cos α −sin α 0

sin α cos α 0
0 0 1

 (3.9)

The effect of Q on each v ∈ �3 is

Qv =

 cos α −sin α 0

sin α cos α 0
0 0 1

 v1

v2

v3

 =

 v1 cos α − v2 sin α

v1 sin α + v2 cos α

v3

 (3.10)

In particular, the basis set obtained by rotating the basis (3.2) is

u[1] = Qe[1] =

 cos α

sin α

0

 u[2] = Qe[2] =

−sin α

cos α

0

 u[3] = Qe[3] =

0

0
1

(3.11)

106 3 Matrix eigenvalue analysis

e u

e2

e1

u2

u1

α

α

Figure 3.1 A counter-clockwise rotation in the 1–2 plane performed by Q.

To obtain the inverse rotation Q−1, we obviously set α →−α,

Q−1 =

 cos(−α) − sin(−α) 0

sin(−α) cos(−α) 0
0 0 1

 =

 cos α sin α 0
− sin α cos α 0

0 0 1

 = QT (3.12)

For this Q, e[3] has the special property that it is unchanged by the rotation,

Qe[3] = e[3] (3.13)

Obviously, this is because Q defines a rotation about e[3]. However, if we did not know this
but rather only knew the matrix elements of Q, recognizing that Qe[3] = e[3] immediately
tells us something useful about the nature of the transformation done by Q. This is the role
of eigenvalue analysis.

Eigenvalues and eigenvectors defined

If A is an N×N matrix, and if w is acted upon by A simply as if it were multiplied by a
scalar λ,

Aw = λw (3.14)

then w is said to be a characteristic vector of A with the characteristic value λ. This field
was developed, to a large extent, by German mathematicians, and the German word for
characteristic value is “eigenwert,” eigen meaning characteristic, individual, or unique, and
wert meaning value or worth. It is now common, if confusing, practice to use the halb
Deutsch/half English terms eigenvalue and eigenvector.
As Iv = v, the “eigenpair” (w , λ) satisfies the linear system

(A − λI)w = 0 (3.15)

For this to hold true for w �= 0, the matrix (A − λI) must be singular, providing a charac-
teristic polynomial of degree N,

p(λ) = det(A − λI) = 0 (3.16)

whose N roots are the eigenvalues of A.

Eigenvalues/eigenvectors of a 2 × 2 real matrix 107

Eigenvalues/eigenvectors of a 2 × 2 real matrix

Before discussing general eigenvector properties, let us consider the case of a 2×2 real
matrix, for which analytical calculation of eigenvalues is easy,

det(A − λI) =
∣∣∣∣a11 − λ a12

a21 a22 − λ

∣∣∣∣ = (a11 − λ)(a22 − λ)− a21a12

= λ2 − (a11 + a22)λ+ (a11a22 − a21a12) (3.17)

As the trace (the sum of the diagonal values) and the determinant of A are

tr(A) = a11 + a22 det(A) = a11a22 − a21a12 (3.18)

then, using the shorthand T = tr(A), D = det(A),

det(A − λI) = λ2 − T λ+ D λ1,2 = T ±√
T 2 − 4D

2
(3.19)

In terms of the elements of A, the eigenvalues are

λ1,2 = 1
2 (a11 + a22)± 1

2

√
(a11 + a22)2 − 4(a11a22 − a21a12) (3.20)

For any 2 × 2 real matrix A, the trace equals the sum of the eigenvalues,

λ1 + λ2 = a11 + a22 = tr (A) (3.21)

Also, we have the following properties for a real 2×2 matrix:

1 if T 2 − 4D > 0, then both eigenvalues are real;
2 if T 2 − 4D = 0, λ1 = λ2 = 1

2 (a11 + a22);
3 if T 2 − 4D < 0, both eigenvalues are complex and λ2 = λ1.

Also, note that the determinant equals the product of the eigenvalues,

λ1λ2 = 1

4
(T +

√
T 2 − 4D)(T −

√
T 2 − 4D) = 1

4
[T 2 − (T 2 − 4D)] = D (3.22)

Thus, A is singular if it has one or more zero eigenvalues.

We now consider some special cases of 2 × 2 real matrices.

A is triangular

A =
[

a11 a12

0 a22

]
det(A) = a11a12 (3.23)

The eigenvalues are

λ1,2 = (a11 + a22)±
√

(a11 + a22)2 − 4a11a22

2
= {a11, a22} (3.24)

For any upper triangular matrix, the eigenvalues are found on the principal diagonal. This
also is true for lower triangular and diagonal matrices,

A =
[

a11 0
a21 a22

]
A =

[
a11 0
0 a22

]
(3.25)

108 3 Matrix eigenvalue analysis

A is real, symmetric (AT = A)

As a12 = a21, D = a11a22 − a2
12, and

λ1,2 = 1
2 (a11 + a22)±

√
(a11 − a22)2 + 4a2

12 (3.26)

Since (a11 − a22)2 + 4a2
12 ≥ 0, both eigenvalues are always real in this case.

Analytical computation of eigenvectors

If w [j] is an eigenvector of A for λj, then so is cw [j], for any c ∈ C , since

Aw [j] = λ j w
[j] ⇒ Acw [j] = λ j cw [j] (3.27)

Thus, w [j] can have any length and still be an eigenvector for λj. This lack of uniqueness
results from the singularity of (A − λ j I). The eigenvector w [j] must satisfy

(A − λ j I)w =
[

(a11 − λ j) a12

a21 (a22 − λ j)

][
w [j]

1

w [j]
2

]
=

[
0
0

]
= 0 (3.28)

which yields the two equations

(a11 − λ j)w
[j]
1 + a12w [j]

2 = 0
(3.29)

a21w [j]
1 + (a22 − λ j)w

[j]
2 = 0

Because det(A − λ j I) = 0, these two equations are dependent, so we pick only one to
satisfy, say the first one. The second then must be satisfied automatically. As we have
flexibility in setting the length of the eigenvector, we are free to choose |w [j]| = 1, which
would yield the two equations

(a11 − λ j)w
[j]
1 + a12w [j]

2 = 0
(3.30)(

w [j]
1

)2 + (
w [j]

2

)2 = 1

As the second equation is nonlinear, rather than finding a unit length eigenvector, we instead
try to find one with w [j]

1 = 1 that satisfies

(a11 − λ j)w
[j]
1 + a12w [j]

2 = 0
(3.31)

w [j]
1 = 1

This linear system has a unique solution if

det

[
(a11 − λ j) a12

1 0

]
= (a11 − λ j)(0)− a12 = −a12 �= 0 (3.32)

in which case we obtain w [j]
2 from the first equation,

(a11 − λ j)(1)+ a12w [j]
2 = 0 ⇒ w [j]

2 = − (a11 − λ j)

a12
(3.33)

If a12 = 0, we instead set w [j]
2 = 1. Once we have computed w [j], we can renormalize to

Multiplicity and formulas for the trace and determinant 109

unit length if desired. Consider the example

A =
[

2 1
1 3

]
D = det(A) = (2)(3)− (1)(1) = 6− 1 = 5

T = tr(A) = 2+ 3 = 5
(3.34)

with the eigenvalues

λ1,2 = 1

2
T ± 1

2

√
T 2 − 4D = 1

2
(5)± 1

2

√
25− (4)(5) = 5

2
±
√

5

2
(3.35)

An eigenvector w [1] for

λ1 = 5

2
+
√

5

2

must satisfy

(a11 − λ1)w [1]
1 + a12w [1]

2 = 0 ⇒ −
(

1

2
+
√

5

2

)
w [1]

1 + w [1]
2 = 0 (3.36)

If we set w [1]
1 = 1, and compute w [1]

2 from (3.36), we obtain

w [1] =
[

1

(
1

2
+
√

5

2

)]T

(3.37)

Above, we have selected a unique eigenvector by arbitrarily setting the value of one com-
ponent. More generally, we may select some vector v, say at random, and choose as a
normalization, v · w [j] = 1. We replace row m of the matrix (A − λ j I) with the elements
of v to obtain a modified matrix (A − λ j I)++. We then obtain the eigenvector by solving
the linear system

(A − λ j I)++w [j] = e[m] e[m]
j = δmj (3.38)

Shortly, we consider numerical methods to compute λk and w [k] without the need for
tedious analytical calculations.

Multiplicity and formulas for the trace and determinant

For an N × N matrix A, the characteristic polynomial

p(λ) = det(A − λI) =
N∑

i1=1

N∑
i2=1

. . .

N∑
iN=1

εi1,i2,...,iN (ai1,1 − λδi1,1) . . . (aiN ,N − λδiN ,N)

(3.39)
is of degree N and thus has N roots, so an N × N matrix has N eigenvalues. However, these
may not all be distinct; i.e., we may have λ j = λk for some j �= k. As an example, consider
the matrix

A =

2 3 4

0 2 5
0 0 1

 p(λ) = (2− λ)2(1− λ)

λ1 = 2 λ2 = 2 λ3 = 1
(3.40)

110 3 Matrix eigenvalue analysis

In general if P ≤ N is the number of distinct roots of (3.39), we write

p(λ) = det(A − λI) = (λ1 − λ)m1 (λ2 − λ)m2 · · · (λP − λ)m P (3.41)

mk is the (algebraic) multiplicity of λk, i.e., the number of times that it is repeated as a root
of (3.39). The multiplicities must sum to N,

m1 + m2 + · · · + m P = N (3.42)

From p(λ = 0), we find the determinant to be the product of the eigenvalues,

det(A) = λ
m1
1 λ

m2
2 . . . λ

m P
P (3.43)

It may also be shown that the trace equals the sum of the eigenvalues,

tr(A) = a11 + a22 + · · · + aN N = λ1 + λ2 + · · · + λN (3.44)

A proof of this result is found in the supplemental material in the accompanying website.

Eigenvalues and the existence/uniqueness properties
of linear systems

We now consider the existence and uniqueness properties of Ax = b from the viewpoint of
eigenvalue analysis. Let A be an N × N matrix, with the P distinct eigenvalues λ1, λ2, . . . ,
λP for eigenvectors w [1], w [2], . . . , w [P],

Aw [k] = λkw [k] (3.45)

Let these P distinct eigenvalues be ordered by increasing modulus,

|λ1| ≤ |λ2| ≤ · · · ≤ |λP | (3.46)

We use the ≤ sign, even though the eigenvalues are distinct, because with complex eigen-
values we may have the distinct, but equal modulus, values

λk = a + ib λk+1 = a − ib a, b ∈ � (3.47)

We now examine the effect of A on an eigenvector associated with λ1,

Aw [1] = λ1w [1] (3.48)

If any eigenvalue is zero, it will be λ1, as we have ordered the eigenvalues by increasing
modulus. Also, if λ1 = 0, A is singular, as

det(A) = λ
m1
1 λ

m2
2 · · · λm P

P = 0 (3.49)

Thus, if λ1 = 0, the null space of A is not empty and there exists some w ∈ K A, w �= 0
such that Aw = 0. But, when λ1 = 0, as

Aw [1] = λ1w [1] = 0 (3.50)

any eigenvector w [1] for λ1 = 0 is in the null space of A and dim(K A) = m1.

Estimating eigenvalues; Gershgorin’s theorem 111

Estimating eigenvalues; Gershgorin’s theorem

With the significant effort required to find the roots of

det(A − λI) = (λ1 − λ)m1 (λ2 − λ)m2 · · · (λP − λ)m P (3.51)

it would be convenient if we could just look at a matrix and be able to “tell” what are
its eigenvalues. Unfortunately, we cannot do this in general, although for a few cases it is
possible. For triangular and diagonal matrices

U =

U11 U12 U1N

U22 . . . U2N

· ...
UN N

 L =

L11

L21 L22
...

. . .

L N1 L N2 . . . L N N

(3.52)

D =

D11

D22

. . .

DN N

the determinant equals the product of the elements along the diagonal,

det(U) = U11U22U33 . . . UN N det(L) = L11L22L33 · · · L N N (3.53)

Thus, the characteristic equation is already factored,

det(U − λI) = (U11 − λ)(U22 − λ)(U33 − λ) · · · (UN N − λ) (3.54)

The eigenvalues of a triangular (diagonal) matrix lie along the diagonal

λ1 = U11 λ2 = U22 . . . λN = UN N (3.55)

For matrices that are not triangular, we cannot determine the eigenvalues by inspection,
but we can obtain upper and lower bounds using Gershgorin’s theorem. Let A be an N×N
matrix,

A =

a11 a12 a13 . . . a1N

a21 a22 a23 . . . a2N

a31 a32 a33 . . . a3N
...

...
...

...
aN1 aN2 aN3 . . . aN N

 (3.56)

In row k, the diagonal element is akk , and the sum of the magnitudes of the off-diagonal
elements is

�k = |ak1| + |ak2| + · · · + |ak,k−1| + |ak,k+1| + · · · + |ak N | (3.57)

As the eigenvalues of A are, in general, complex, we make a graph of the complex plane and
place the eigenvalue λ= a+ ib at (a, b) (Figure 3.2). On this graph, we add a circle for each
row k of the matrix. The center of the circle is placed at the location of the diagonal element
akk in the complex plane, and the radius of the circle is the sum of the magnitudes of the

112 3 Matrix eigenvalue analysis

b

a

Γ1
Γ2

a11 a22

λ = a + ib

Im(λ)

Re(λ)

a1NΓ1 = a12 a13+ + +
a2NΓ2 = a21 a23+ + a24 + +. . .

. . .

Figure 3.2 The complex plane, showing that an eigenvalue must lie within one of the Gershgorin
circles.

1

2

−2

−

−

−
−1

 are diana eeents diands are eien vaes
A 1 2 1

r1 =
r =

r2 =

a22 = 2

a11 = 1

a =
λ1 = 1

λ2 = 11

λ =

1 1 22

e λ

λ

2
−2 2 2

Figure 3.3 Test of Gershgorin’s theorem for an example 3×3 matrix.

off-diagonal elements in the row, �k. Gershgorin’s theorem states that every eigenvalue λ

must be located within one of these circles; i.e.,

|λ− akk | ≤ �k =
N∑
j=1
j �=k

|akj | for some k ∈ [1, N] (3.58)

A proof, relying upon the concepts of matrix norm and spectral radius introduced in the next
section, is provided in the supplemental material in the accompanying website. Figure 3.3
demonstrates the application of Gershgorin’s theorem to a 3× 3 matrix. test-Gershgorin.m
generates this plot for any input matrix.

Gershgorin’s theorem does not tell us what the eigenvalues are exactly, but at least it
provides information about where they can be located. The eigenvalues tend to be clustered
around the diagonal values when the diagonal elements are much larger in magnitude than
the off-diagonal elements.

Estimating eigenvalues; Gershgorin’s theorem 113

Matrix norm, spectral radius, and condition number

We have defined the norm of a vector as a rule that assigns to every v ∈ C N a scalar
‖v‖ ∈ � that represents the “size” of v and that satisfies ‖v‖ ≥ 0, where ‖v‖ = 0 if and
only if v = 0. For each particular vector norm ‖v‖, we can generate a corresponding matrix
norm ‖A‖,

‖A‖ = maxv�=0
‖Av‖
‖v‖ (3.59)

How is ‖A‖ related to the eigenvalues λ1, λ2, . . . , λN of A? Let {w [1], . . . , w [N]} ∈ C N be
unit-length eigenvectors with Aw [k] = λkw [k] and let SW = span{w [1], . . . , w [N]}. We can
decompose any v ∈ C N into a component u ∈ SW and a component y /∈ SW ,

v = u+ y = c1w [1] + c2w [2] + · · · + cN w [N] + y

y /∈ SW = span{w [1], . . . , w [N]} (3.60)

The matrix norm can then be expressed as

‖A‖ = maxu∈SW max y /∈SW
u+y �=0

‖Au+ Ay‖
‖u+ y‖ (3.61)

We thus must have

‖A‖ ≥ maxu∈SW
u�=0

‖Au‖
‖u‖ (3.62)

where the equality holds if the set of eigenvectors of A completely spans CN; i.e., if the set
{w [1], . . . , w [N]} is linearly independent, SW = C N . We define the quantity on the right-
hand side of (3.62) as the spectral radius, ρ(A),

ρ(A) = maxu∈SW
u �=0

‖Au‖
‖u‖ = max{c1 ,...,cN }

u�=0

∥∥A
(
c1w [1] + c2w [2] + · · · + cN w [N]

)∥∥∥∥c1w [1] + c2w [2] + · · · + cN w [N]
∥∥

ρ(A) = max{c1 ,...,cN }
u�=0

∥∥c1λ1w [1] + c2λ2w [2] + · · · + cN λN w [N]
∥∥∥∥c1w [1] + c2w [2] + · · · + cN w [N]

∥∥ (3.63)

As the maximum is attained when u points in the direction of an eigenvector for the eigen-
value of largest modulus,

ρ(A) = max{|λ1|, |λ2|, . . . , |λN |} (3.64)

The spectral radius provides a lower bound on the matrix norm,

‖A‖ ≥ ρ(A) (3.65)

The condition number, κ , the ratio of the largest and smallest eigenvalue magnitudes, is

κ = λmax

λmin
λmax = ρ(A) λmin = min{|λ1|, |λ2|, . . . , |λN |} (3.66)

A matrix with a large condition number is said to be ill-conditioned.
Condition numbers are computed in MATLAB using cond and condest. Vector and matrix
norms are computed by norm and normest.

114 3 Matrix eigenvalue analysis

Applying Gershgorin’s theorem to study the convergence of
iterative linear solvers

As a demonstration of the usefulness of Gershgorin’s theorem, we generate a convergence
criterion for the Jacobi iterative method of solving Ax = b. This example is typical of the
use of eigenvalues in numerical analysis, and also shows why the questions of eigenvector
basis set existence raised in the next section are of such importance.

We develop here a simple alternative to Gaussian elimination for solving a linear system
Ax = b. It is based on forming an initial guess of the solution, x[0], and iteratively refining
it to form a sequence x[1], x[2], . . . that hopefully converges to a solution; i.e.,

lim
k→∞

∥∥Ax[k] − b
∥∥ = 0 (3.67)

We add to each side of Ax = b the term Bx, for some non singular B,

Ax + Bx = b + Bx (3.68)

Upon rearrangement, this yields the identity

Bx = b + (B − A)x (3.69)

and suggests a rule for forming a new guess x[k+1] from x[k],

Bx[k+1] = b + (B − A)x[k] (3.70)

If B = A, this rule yields the exact solution after only one iteration, but it is equivalent
to solving Ax = b directly in the first place. We therefore want to choose some B that
approximates A such that: (1) ‖B− A‖ is small and (2) the update linear system is easy to
solve (e.g. B is triangular). In the Jacobi method, we simply choose B to be the diagonal
part of A,

B =

a11

a22

. . .

aN N

 (3.71)

Under what conditions must the Jacobi method converge? To answer this question, let us
define the error vector at iteration k as

ε[k] ≡ x[k] − x x = A−1b (3.72)

We want limk→∞ ‖ε[k]‖ = 0. We obtain a rule for the transformation of the error vector at
each iteration by subtracting (3.69) from (3.70),

Bε[k+1] = (B − A)ε[k] ⇒ ε[k+1] = B−1(B − A)ε[k] (3.73)

We now use Gershgorin’s theorem to find when limk→∞ ‖ε[k]‖ = 0. Let us assume that the
matrix B−1(B − A) has a set of eigenvectors {w [1], w [2], . . . , w [N]}, satisfying B−1(B −
A)w [j] = λ j w [j], that is linearly independent and forms a basis for �N . We can then express

Applying Gershgorin’s theorem 115

any vector as a linear combination of the eigenvectors, and in particular, the error associated
with the initial guess can be written as

ε[0] = c1w [1] + c2w [2] + · · · + cN w [N] (3.74)

After the first iteration, the error is

ε[1] = B−1(B − A)ε[0] = B−1(B − A)
[
c1w [1] + c2w [2] + · · · + cN w [N]

]
= c1 B−1(B − A)w [1] + c2 B−1(B − A)w [2] + · · · + cN B−1(B − A)w [N]

= c1λ1w [1] + c2λ2w [2] + · · · + cN λN w [N] (3.75)

After the second iteration, the error is

ε[2] = B−1(B − A)e[1] = B−1(B − A)
[
c1λ1w [1] + c2λ2w [2] + · · · + cN λN w [N]

]
= c1λ

2
1w [1] + c2λ

2
2w [2] + · · · + cN λ2

N w [N] (3.76)

After k iterations, the error is

ε[k] = c1λ
k
1w [1] + c2λ

k
2w [2] + · · · + cN λk

N w [N] (3.77)

If all eigenvalues of B−1(B − A) have moduli less than 1, |λ j | < 1, then

1 > |λ j | > |λ j |2 > |λ j |3 > · · · (3.78)

and limk→∞ |c jλ
k
j | = 0 for finite {c1, c2, . . . , cN }, so that limk→∞ ‖ε[k]‖ = 0. For the B

of (3.71), we write B−1(B − A) explicitly,

B−1(B − A) =

0 (−a12/a11) . . . (−a1N /a11)
(−a21/a22) 0 . . . (−a2N /a22)

...
...

...
(−aN1/aN N) (−aN2/aN N) . . . 0

 (3.79)

By Gershgorin’s theorem, each eigenvalue λ j of B−1(B − A) must satisfy the following
inequality for some k = 1, 2, . . . , N :

|λ j | ≤
N∑

m=1
m �=k

|−akm/akk | = 1

|akk |
N∑

m=1
m �=k

|akm | (3.80)

Therefore, we can ensure that all |λ j | < 1, if for every k = 1, 2, . . . , N :

1

|akk |
N∑

m=1
m �=k

|akm | < 1 ⇒
N∑

m=1
m �=k

|akm | < |akk | (3.81)

That is, for every row of A, the magnitude of the diagonal element is greater than the sum
of the magnitudes of all off-diagonal elements. A matrix for which this property holds is
said to be strictly diagonally dominant. For such a matrix, the Jacobi method converges to
a solution from any x[0].

116 3 Matrix eigenvalue analysis

1 2 3 4

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

A =

Figure 3.4 Graph for an irreducible matrix, with all nodes connected by a directed path.

Irreducible matrices

It may be shown that for matrices that are irreducible, it is sufficient only that the following,
weaker inequality be satisfied,

N∑
m=1

m �=k

|akm | ≤ |akk | (3.82)

A matrix A is irreducible if there exists no permutation matrix P, such that PAPT takes the
block upper triangular form

P APT =
[

A11 A12

0 A22

]
(3.83)

A11 and A22 are square submatrices. An example irreducible matrix is that obtained when
discretizing the operator −d2/dx2 using finite differences,

A =

2 −1
−1 2 −1

−1 2 . . .

−1 . . . −1
. . . 2 −1

−1 2

(3.84)

As |2|= |−1| + |−1|, we can expect Jacobi’s method to converge only if this matrix is
indeed irreducible.

To show that a matrix is irreducible, we make a graph with a node for each row (column)
number of the system, k = 1, 2, . . . , N (Figure 3.4 for (3.84) with N = 4). For each non
zero element, we draw an arrow from the node of the row number to the node of the column
number. If there exists a directed path that connects every pair of nodes, the matrix is
irreducible.

In the derivation above, we have assumed that we can write any arbitrary vector v ∈ �N

as a sum of the eigenvectors of B−1(B − A). This assumption is not always valid. Next,
we derive some conditions under which a matrix is guaranteed to have a set of N linearly
independent eigenvectors.

Eigenvector matrix decomposition and basis sets 117

Eigenvector matrix decomposition and basis sets

For a given N × N matrix, when does the set of eigenvectors form a complete basis such
that any v ∈ C N can be expressed as a linear combination of eigenvectors?

Can we express a matrix as a decomposition involving matrices that comprise eigenvalues
and eigenvectors?

Are there special classes of matrices for which the eigenvalues can be proved to be real, or
for which the set of eigenvectors is not only linearly independent, but also orthogonal?

Such questions may seem abstract, but they are in fact very important in practice. Above,
our proof of convergence of Jacobi’s method is based upon the assumed existence of a
complete eigenvector basis for B−1(B − A).

Eigenvector properties of a general N × N complex matrix

Because we cannot assume that the eigenvectors and eigenvalues are real, even for a real
matrix, we consider the general case where λk ∈ C, w [k] ∈ C [N], and A is an N×N complex
matrix,

A =

(a11 + ib11) (a12 + ib12) . . . (a1N + ib1N)
(a21 + ib21) (a22 + ib22) . . . (a2N + ib2N)

...
...

...
(aN1 + ibN1) (aN2 + ibN2) . . . (aN N + ibN N)

 (3.85)

If we do not make any special assumptions about the structure of the matrix, we cannot
establish generally that the eigenvectors form a complete basis for C N . We can prove the
following statements, however.

Theorem ENVG1 Eigenvectors w [j] and w [k], satisfying Aw [j] = λ j w [j] and Aw [k] =
λkw [k] respectively, are linearly independent if λ j �= λk . Thus, the eigenvectors of any N×
N matrix A that has N distinct eigenvalues form a complete basis for C N .

Proof We want to show that when λ j �= λk, we cannot have cw [j] = w [k]. Let us assume,
contrary to the theorem, that cw [j] = w [k]. We replace w [k] with cw [j] in the first term of
Aw [k] − λkw [k] = 0,

Acw [j] − λkw [k] = λ j cw [j] − λkw [k] = 0 (3.86)

and replace w [k] with cw [j] in the second term,

λ j cw [j] − λkcw [j] = c(λ j − λk)w [j] = 0 (3.87)

This poses a contradiction with w [j] �= 0 when λ j �= λk and thus we cannot have cw [j] =
w [k]. As w [j] and w [k] cannot be parallel, they are linearly independent. Thus, if A has N
distinct eigenvalues, no two of {w [1], . . . , w [N]} can be parallel and the eigenvectors form
a complete basis set. QED

118 3 Matrix eigenvalue analysis

Theorem EVG2 For any A, it follows from the rules of matrix multiplication that we
can form the following matrices from the eigenvalues and eigenvectors satisfying Aw [j] =
λ j w [j],

� =

λ1

λ2

. . .

λN

 W =

 | | |

w [1] w [2] . . . w [N]

| | |

 (3.88)

and write A as

AW = W� (3.89)

Proof By the rules of matrix multiplication, the left-hand side of (3.89) is

AW = A

 | | |

w [1] w [2] . . . w [N]

| | |

 =

 | | |

Aw [1] Aw [2] . . . Aw [N]

| | |

 (3.90)

The right-hand side is

W� =

 | | |

w [1] w [2] . . . w [N]

| | |

λ1

λ2

. . .

λN

=

 | | |

λ1w [1] λ2w [2] . . . λN w [N]

| | |

 (3.91)

Because Aw [j] = λ j w [j], we see that AW = W�. QED

Definition Note that while we can write any A as AW = W�, we cannot assume that W is
nonsingular. Only if the eigenvectors form a complete basis for CN will det(W) �= 0, such
that W−1 exists. If det(W) �= 0, we say that A is diagonalizable, and we can write A in Jordan
form,

A = W�W−1 (3.92)

From the Jordan form, we see that if Aw = λw , then A−1w = λ−1w . Using the rule
(AB)−1 = B−1 A−1, A−1 = (W�W−1)−1 = W�−1W−1. This is the Jordan form of A−1,
and thus A−1w = λ−1w .

Theorem EVG3 Let S be some arbitrary non singular N×N complex matrix. Let A and
B be N × N complex matrices related to one another by the similarity transformation

B = S−1 AS (3.93)

Then A and B are said to be similar, and share the same set of eigenvalues. Their eigenvectors
satisfy Aw = λw and B(S−1w) = λ(S−1w).

Eigenvector matrix decomposition and basis sets 119

Proof The eigenvalues of B are roots of det(B − λI) = 0. Substituting B = S−1AS,

det(B − λI) = det(S−1 AS − λI) = 0 (3.94)

We now use the identity I = S−1S = S−1IS to obtain

det(B − λI) = det(S−1 AS − λS−1 I S) = det(S−1(A − λI)S) = 0 (3.95)

Now, as det(AB) = det(A) × det(B),

det(B − λI) = det(S−1)× det(A − λI)× det(S) = 0 (3.96)

As det(S) �= 0 and det(S−1) �= 0 for a nonsingular S, λ can only satisfy det(B − λI) = 0 if
it also satisfies det(A − λI) = 0. Thus, A and B = S−1AS have the same eigenvalues.

Let Aw = λw . Substituting A = SBS−1, we have SBS−1 w = λw . Multiplying by S−1

yields the following relationship between eigenvectors of A and B:

Aw = λw B(S−1w) = λ(S−1w) (3.97)

QED

Definition The Hermitian conjugate of A, AH, is obtained by taking the transpose of the
matrix and its complex conjugate,

Akj = akj + ibk j {akj,bkj } ∈ � (AH)k j = a jk − ib jk (3.98)

The Hermitian conjugate of a matrix product is (AB)H = BH AH.

Definition A matrix A is said to be Hermitian if A = AH. A real Hermitian matrix A is
symmetric, A = AT.

Definition A matrix U is said to be unitary if UH = U−1. A real unitary matrix Q is
orthogonal, QT = Q−1.

Definition A matrix A is said to be normal if AAH = AHA. Hermitian and unitary matrices
are both special cases of normal matrices.

Theorem EVG4 We can write any complex matrix A in terms of a unitary matrix U and
upper triangular matrix R as the Schur decomposition,

A = U RU H (3.99)

As UH = U−1, A and R are similar, and as R is triangular, the diagonal elements of R are
eigenvalues of A. In MATLAB, a Schur decomposition is computed by schur.

Proof We proceed by induction, showing that if (3.99) holds for (N− 1)× (N− 1) matrices,
then it also does for N × N matrices. For N = 1, we have the trivial result

U = 1 A = R = λ (3.100)

For an N × N matrix A, let Aw = λw, |w | = 1, and let {w, u[2], . . . , u[N]} form an

120 3 Matrix eigenvalue analysis

orthonormal basis for CN. Then, the matrix

U [N] =

 | | |

w u[2] . . . u[N]

| | |

 (

U [N]
)H =

— wH —

—
(
u[2]

)H
—

...

—
(
u[N]

)H
—

 (3.101)

is unitary, (U [N])HU [N] = I, as{(U [N])HU [N]}mn = u[m]·u[n] = δmn . Then,

AU [N] = A

 | | |

w u[2] . . . u[N]

| | |

 =

 | | |

λw Au[2] . . . Au[N]

| | |

 (3.102)

and

(
U [N]

)H
AU [N] =

— wH —

—
(
u[2]

)H
—

...

—
(
u[N]

)H
—

 | | |

λw Au[2] . . . Au[N]

| | |

=

λ — cH —
| b22 . . . b2N

0
...

...
| bN2 . . . bN N

 (3.103)

bmn = u[m] · Au[n]. That is, in terms of an (N − 1) × (N − 1) matrix B,

(
U [N]

)H
AU [N] =

[
λ cH

0 B

]
(3.104)

If the theorem holds for B, we can write V HBV = T , for V H = V−1and T upper triangular.
Then, defining the N × N unitary matrix

U [N−1] =
[

1 0T

0 V

] (
U [N−1]

)H =
[

1 0T

0 V H

]
(3.105)

we have

(
U [N−1]

)H{(
U [N]

)H
AU [N]

}
U [N−1] =

[
1 0T

0 V H

] [
λ cH

0 B

] [
1 0T

0 V

]

=
[

λ cH

0 (V H BV)

]
(3.106)

As U = U [N]U [N−1] is unitary and VHBV = T, then

U H AU = R R =
[

λ cH

0 T

]
(3.107)

Thus, if the theorem holds for (N − 1) × (N − 1) matrices, it holds for N × N matrices as
well. QED

Eigenvector matrix decomposition and basis sets 121

Special eigenvector properties of normal matrices

Normal matrices, AAH = AH A, have additional eigenvector properties.

Theorem EVN1 (spectral decomposition) If A is a normal matrix, it is possible to find a
complete orthonormal set of eigenvectors even if the matrix has eigenvalues of multiplicity
greater than 1; i.e. det(A − λI) = 0 has repeated roots. The matrix W whose columns are
these eigenvectors is unitary, and we can write A as

A = W�W H � = diag(λ1, λ2, . . . , λN) (3.108)

Proof We first write A as a Schur decomposition,

A = U RU H (3.109)

Taking the Hermitian conjugate,

AH = (U RU H)H = U RHU H (3.110)

we then form the two matrix products

AAH = U RU H(U RHU H) = U R RHU H

AH A = U RHU H(U RU H) = U RH RU H (3.111)

For A to be normal, AAH = AH A, R must be normal as well, R RH = RH R. For

R =

R11 R12 R13 . . . R1N

R22 R23 . . . R2N

R33 . . . R3N

. . .
...

RN N

 RH =

R̄11

R̄12 R̄22

R̄13 R̄23 R̄33
...

...
...

. . .

R̄1N R̄2N R̄3N . . . R̄N N

(3.112)

R RH = RH R only if R is diagonal. As R is similar to A,

R = � =

λ1

λ2

. . .

λN

 (3.113)

The Schur decomposition for a normal matrix is therefore

A = U�U H (3.114)

Postmultiplication by U yields

AU = U� (3.115)

The general form of the eigenvector decomposition (3.89) is AW=W�, where W is a matrix
whose column vectors are eigenvectors of A. Therefore, for any normal matrix A, we can
form a unitary matrix whose column vectors are eigenvectors to write A in Jordan normal
form,

A = W�W H (3.116)

122 3 Matrix eigenvalue analysis

For a matrix to be unitary, its column vectors must be orthogonal, as

W HW =

—
(
w [1]

)H
—

...

—
(
w [N]

)H
—

 | |

w [1] . . . w [N]

| |

=

(
w [1] · w [1]

)
. . .

(
w [1] · w [N]

)
...

...(
w [N] · w [1]

)
. . .

(
w [N] · w [N]

)

 = I (3.117)

Therefore, it is always possible, for any normal matrix A, to find a complete, orthonormal
basis for C N whose members are eigenvectors of A. One can write any vector v ∈ C N as
the spectral decomposition

v = c1w [1] + c2w [2] + · · · + cN w [N] w [j] ∈ C N (3.118)

Aw [j] = λ j w
[j] w [j] · w [k] = δ jk c j = w [j] · v QED

CorollaryENV1-1 Let us write a normal matrix A in Jordan normal form as A=W�WH.
Taking the Hermitian conjugate, AH = W�HWH. Therefore, the normal matrices A and AH

share the same set of eigenvectors, and the eigenvalues of AH are the complex conjugates
of those of A,

Aw [j] = λ j w
[j] ⇒ AHw [j] = λ j w

[j] (3.119)

Theorem EVN2 If A is Hermitian, A = AH, all of its eigenvalues are real.

Proof If A = AH, then by writing the matrices in normal form,

A = W�W H AH = (W�W H)H = W�HW H (3.120)

we see the diagonal matrix of eigenvalues must also be Hermitian,

� = �H (3.121)

Thus for each j = 1, 2, . . . , N , λ j = λ j , and every eigenvalue must be real. QED

Corollary ENV2-1 (spectral decomposition of �N) Let A be a real, symmetric matrix,
AT = A, and thus Hermitian. From Aw [j] = λ j w [j], as both A and λj are real, it is always
possible to find a real set of mutually orthonormal eigenvectors for A. Therefore, we may
write any vector v ∈ �N as the eigenvector expansion

v = c1w [1] + c2w [2] + · · · + cN w [N] w [j] ∈ �N

(3.122)
Aw [j] = λ j w

[j] w [j] · w [k] = δ jk c j = w [j] · v ∈ �
Definition A real symmetric matrix A is said to be positive-definite if v · Av = vT Av > 0
for all v ∈ �N . Let the eigenvalues and orthonormal eigenvectors of A satisfy Aw [j] =
λ j w [j], w [j] · w [k] = δ jk, w [j] ∈ �N , λ j ∈ �. Thus, we can write any v ∈ �N as the linear
combination

v =
N∑

j=1

(
w [j] · v)w [j] =

N∑
j=1

c j w
[j] (3.123)

Numerical calculation of eigenvalues and eigenvectors 123

so that

v · Av = v · A

[
N∑

j=1

c j w
[j]

]
= v ·

N∑
j=1

c j Aw [j] =
[

N∑
k=1

ckw [k]

]
·

N∑
j=1

c jλ j w
[j]

=
N∑

k=1

N∑
j=1

c j ckλ j

[
w [k] · w [j]

] = N∑
j=1

c2
jλ j (3.124)

Thus, a real symmetric matrix A is positive-definite if all of its eigenvalues are positive. If we
have only that vT Av ≥ 0, A is said to be positive-semidefinite. If vT Av < 0 orvT Av ≤ 0,

A is negative-definite or negative-semidefinite respectively. If no such condition holds for
all v ∈ �N , A is indefinite.

Theorem EVN3 If U is unitary, all of its eigenvalues have moduli of 1.

Proof We write U and UH in normal form,

U = W�W H U H = W�HW H (3.125)

For U to be unitary, we require

UU H = W�W H
(
W�HW H

) = W��HW H = I (3.126)

Thus � must also be unitary,

��H = W H I W = W HW = I (3.127)

For each diagonal element of ��H, λjλ̄ j , to be 1, we must have |λj| = 1. QED

Numerical calculation of eigenvalues and eigenvectors in MATLAB

We now consider the numerical calculation of eigenvalues and eigenvectors. In this section,
we merely demonstrate the use of the MATLAB routines for computing eigenvalues and
eigenvectors. eig computes all eigenvalues and eigenvectors of a matrix, and eigs computes
only certain eigenvalues and eigenvectors of interest, e.g. those eigenvalues with the largest
moduli. In the following two sections, the algorithms used by these routines are discussed
in further detail.

Computing all eigenvalues and eigenvectors with eig

eig uses the iterative QR method (described below) to compute all eigenvalues and eigen-
vectors of a matrix. Consider the matrix

A =

 1 2 −1

3 0 −2
−1 1 4

 (3.128)

With a single output argument, eig returns a vector of eigenvalues,

A = [1 2 - 1; 3 0 - 2; - 1 1 4];
e = eig(A),

124 3 Matrix eigenvalue analysis

e =
- 1.8284
3.8284
3.0000

With two output arguments, eig returns first a matrix W whose column vectors are the
eigenvectors of A, and a diagonal matrix D, such that AW = WD,

[W,D] = eig(A),
W =

0.6152 - 0.6198 0.7071
- 0.7527 - 0.6854 0.7071
0.2347 0.3823 0.0000

D =
- 1.8284 0 0
0 3.8284 0
0 0 3.0000

eig cannot be used with sparse-format matrices, e.g. those set by spalloc.

Computing extremal eigenvalues and their eigenvectors with eigs

Often, we need not compute all eigenvalues, but rather only certain ones, e.g. the largest or
smallest in magnitude. In MATLAB this is done by eigs using the iterative methods discussed
below. We demonstrate the routine for a positive-definite matrix A, such as is obtained by
discretizing a diffusion equation in one dimension. As eigs is compatible with sparse-format
matrices we use this option,

N = 25;
v = ones(N,1);
A = spdiags([-v 2*v -v], -1:1, N, N);

With a single output, eigs(A,k) returns the k eigenvalues of A with the largest magnitude.
eigs(A) performs this calculation for k = 6.

e = eigs(A,5);
e =

3.9854
3.9419
3.8700
3.7709
3.6460

We can change the types of eigenvalues computed through a third argument, SIGMA, taking
the values ‘LM’ or ‘SM’ to compute the eigenvalues of largest or smallest magnitude, ‘BE’
to compute eigenvalues from “both ends” of the magnitude spectrum, ‘LR’, ‘SR’, ‘LI’, ‘SI’ to
compute the eigenvalues of largest/smallest real or imaginary parts, and a scalar value to
compute eigenvalues closest to SIGMA. For example,

Numerical calculation of eigenvalues and eigenvectors 125

e = eigs(A,3,‘SM’),
e =

0.1300
0.0581
0.0146

and

e = eigs(A,4,1.0),
e =

1.2908
1.0706
0.8639
0.6738

In addition to this output, eigs writes information about its internal calculations to the
screen. To turn this off, use

OPTS.disp = 0;
e = eigs(A,5,‘LM’,OPTS);

Other fields in OPTS allow us to modify the behavior of the algorithm, e.g. by decreasing
the tolerances. Type help eigs for more information.

With two arguments, eigs returns a matrix W of eigenvectors and a diagonal matrix D of
eigenvalues such that AW = WD. The following code computes and plots the eigenvectors
of largest and smallest magnitudes,

[W,D] = eigs(A,2,‘BE’,OPTS);
figure; plot(W(:,1),‘–’);
hold on; plot(W(:,2));
xlabel(‘component’); ylabel(‘w(k)’);
title(‘Eigenvectors of 1-D diffusion matrix’);
phrase1 = [‘ \ lambda = ’, num2str(D(1,1))];
phrase2 = [‘ \ lambda = ’, num2str(D(2,2))];
legend(phrase1, phrase2, ‘Location’, ’Best’);

The graph generated by this code is shown in Figure 3.5.
Above, we have called eigs for a sparse-format matrix A. A matrix stored in full matrix

format can also be used. Additionally, we can merely supply a routine that returns for each
input v, the corresponding vector Av. For the matrix above, this is done by

function Av = diff matrix 1D mult(v);

N = length(v);
Av = zeros(N,1);
Av(1) = 2*v(1) - v(2);
for k = 2:(N-1)

Av(k) = -v(k-1) +2*v(k)-v(k+1);

126 3 Matrix eigenvalue analysis

2

1

1 1 2 2

−1

−2

−

−

w

λ = 12
λ =

cnent

Figure 3.5 Plots of the eigenvector components for the eigenvalues of largest and smallest magnitudes
for a 1-D diffusion matrix.

end
Av(N) = -v(N-1) + 2*v(N);
return;

The five eigenvalues of largest magnitude for N = 25 are computed by

e = eigs(‘diff matrix 1D mult’,25,5,‘LM’,OPTS),
e =

3.9854
3.9419
3.8700
3.7709
3.6460

Computing extremal eigenvalues

We now delve into the details of the algorithms behind eig and eigs, starting first with
methods for calculating extremal eigenvalues. Let us say that we want to find the eigenvalue
of largest magnitude of a matrix A, assumed diagonalizable. That is, we assume that the
set of N eigenvectors of A are linearly independent, and that we can write any vector
v ∈ C N as

v = c1w [1] + c2w [2] + · · · + cN w [N]

(3.129)
Aw [j] = λ j w

[j] c j ∈ C

Let us generate at random some vector v[0], and write it as the linear combination above. It
is highly unlikely that this random vector is an eigenvector of A, and we expect each of the

Computing extremal eigenvalues 127

coefficients {c1, c2, . . . , cN} to be nonzero. From v[0], we obtain a sequence of new vectors
v[1], v[2], . . . by the rule

v[k+1] = Av[k]∣∣Av[k]
∣∣ (3.130)

Writing these vectors as linear combinations of eigenvectors, we have

Av[0] = A
[
c1w [1] + · · · + cN w [N]

] = c1λ1w [1] + · · · + cN λN w [N] (3.131)

so that

v[1] = Av[0]∣∣Av[0]
∣∣ = c1λ1w [1] + c2λ2w [2] + · · · + cN λN w [N]∣∣Av[0]

∣∣ (3.132)

Next,

Av[1] = A
[
c1λ1w [1] + · · · + cN λN w [N]

]∣∣Av[0]
∣∣ = c1λ

2
1w [1] + · · · + cN λ2

N w [N]∣∣Av[0]
∣∣ (3.133)

so that

v[2] = c1λ
2
1w [1] + c2λ

2
2w [2] + · · · + cN λ2

N w [N]∣∣Av[1]
∣∣×∣∣Av[0]

∣∣ (3.134)

or in general,

v[k] = c1λ
k
1w [1] + c2λ

k
2w [2] + · · · + cN λk

N w [N]∣∣c1λ
k
1w [1] + c2λ

k
2w [2] + · · · + cN λk

N w [N]
∣∣ (3.135)

Let us assume that the eigenvalues are ordered by decreasing modulus, and that λ1 is both
distinct and has a larger modulus than λ2:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λN−1| ≥ |λN | (3.136)

Note that this is a stricter statement than saying that λ1 is distinct, as if λ2 = λ1, λ1 is
distinct, but |λ2| = |λ1|. If (3.136) holds, as k →∞,∣∣λk

1

∣∣� ∣∣λk
2

∣∣ ≥ ∣∣λk
3

∣∣ ≥ · · · ≥ ∣∣λk
N−1

∣∣ ≥ ∣∣λk
N

∣∣ (3.137)

and for any finite {c1, c2, . . . , cN }, we eventually have∣∣c1λ
k
1

∣∣� ∣∣c2λ
k
2

∣∣ ≥ ∣∣c3λ
k
3

∣∣ ≥ · · · ≥ ∣∣cN−1λ
k
N−1

∣∣ ≥ ∣∣cN λk
N

∣∣ (3.138)

Therefore, as k →∞,

v[k] ≈ c1λ
k
1w [1]∣∣c1λ
k
1w [1]

∣∣ (3.139)

In this limit, as Av[k] ≈ λ1v
[k],

λk ≈ v[k] · Av[k] w [1] ≈ v[k+1] (3.140)

We have assumed above that c1 �= 0; however, this is not really necessary. In the presence of
round-off error, which mixes in some w [1] component, this algorithm will find λ1 and w [1]

even if initially c1 were zero.

128 3 Matrix eigenvalue analysis

Convergence of power method with a degenerate
leading eigenvalue

We have assumed that |λ1| > |λ2|. What happens if |λ1| = |λ2|? In general, the power
method oscillates and the sequence v[1], v[2], . . . fails to converge. However, for the
special case of a Hermitian, positive-semidefinite matrix, all eigenvalues must be real and
non-negative. The only way that |λ1| = |λ2| is if λ1 = λ2. In the limit k →∞,

v[k] ≈ c1λ
k
1w [1] + c2λ

k
2w [2]∣∣c1λ

k
1w [1] + c2λ

k
2w [2]

∣∣ = λk
1

[
c1w [1] + c2w [2]

]∣∣λk
1

[
c1w [1] + c2w [2]

]∣∣ (3.141)

Therefore, the method converges to some linear combination of w [1] and w [2]. But, if both
w [1] and w [2] are eigenvectors for λ1 = λ2, c1w [1] + c2w [2] is one as well and the power
method converges to an eigenvector for λ1 = λ2, but the exact eigenvector found depends
upon the initial guess.

Finding the next largest eigenvalues of a
positive-semidefinite matrix

Let us say that by the power method we have found the largest magnitude eigenvalue λ1

and its associated eigenvector w [1] for a positive-semidefinite matrix A. We now want to
compute the next largest eigenvalue λ2. To do so, we generate at random some new vector,
that we can express as a linear combination of eigenvectors,

v[0] = c1w [1] + c2w [2] + · · · + cN w [N]

(3.142)
Aw [j] = λ j w

[j] c j ∈ C

As the eigenvectors of a Hermitian matrix are orthogonal, w [2] is orthogonal to w [1]. We
then can project out the w [1] component by the operation,

ṽ[0] = [
I − w [1]

(
w [1]

)T]
v[0] = v[0] − w [1]

(
w [1] · v[0]

)
= [

c1w [1] + c2w [2] + · · · + cN w [N]
]− w [1](c1)

= c2w [2] + · · · + cN w [N] (3.143)

We now take as our iteration rule,

ṽ[k+1] =
[
I − w [1]

(
w [1]

)T](
Aṽ[k]

)
∣∣[I − w [1]

(
w [1]

)T](
Aṽ[k]

)∣∣ (3.144)

In terms of the original expansion of v[0], the sequence is

ṽ[k] = c2λ
k
2w [2] + · · · + cN λk

N w [N]∣∣c2λ
k
2w [2] + · · · + cN λk

N w [N]
∣∣ (3.145)

If |λ2| > |λ3| ≥ |λ4| ≥ · · · ≥ |λN |, this sequence converges to w [2]. By continuing this
process, we compute the eigenvalues and eigenvectors in order of decreasing magnitude.

The QR method for computing all eigenvalues 129

Inverse inflation and shift operations to find other eigenvalues

Rather than finding the eigenvalue of largest modulus, let us find the eigenvalue λj of A
closest to some target shift value µ. As the eigenvalues of (A − µI) are λj − µ, we only
need to derive a method that finds the smallest magnitude eigenvalue of (A − µI). We do
so by applying the iterative rule

(A − µI)z[k] = v[k] v[k+1] = z[k]∣∣z[k]
∣∣ (3.146)

This method can be written as

v[k+1] = (A − µI)−1v[k]∣∣(A − µI)−1v[k]
∣∣ (3.147)

Thus, it returns the largest modulus eigenvalue of (A − µI)−1. As the eigenvalues of (A
− µI)−1 are (λj − µ)−1, this method finds the eigenvalue of smallest |λ j − µ|. At each
iteration, we must solve a linear system (A − µI)z[k] = v[k], which is done efficiently by
LU decomposition, so that later iterations only require solving two triangular systems by
substitution.

The QR method for computing all eigenvalues

We next consider a method to compute all eigenvalues of a matrix concurrently by transform-
ing the matrix into a similar one whose eigenvalues are easy to calculate. The transformation
is done through iterative use of QR decompositions, described below.

QR decomposition of a real matrix

Just as a matrix may be factored into the product of lower and upper triangular matrices, it
may also be factored into the product of an orthogonal matrix Q, QT = Q−1, and an upper
triangular matrix R,

A = Q R (3.148)

We describe here an algorithm based on Householder transformations (reflections). For any
w ∈ �N with |w | = 1, we can generate the matrix

P = I − 2wwT =

(1− 2w1w1) (−2w1w2) . . . (−2w1w N)
(−2w2w1) (1− 2w2w2) . . . (−2w2w N)

...
...

...
(−2w N w1) (−2w N w2) . . . (1− 2w N w N)

 (3.149)

that negates the component of any w ∈ �N in the direction of w (Figure 3.6),

Px = (
I − 2w wT

)
x = x − 2(w · x)w (3.150)

The matrix (3.149) is symmetric and orthogonal,

PT = (I − 2w wT)T = I − 2w wT = P PT P = P P = I (3.151)

130 3 Matrix eigenvalue analysis

w
x

Px

Figure 3.6 Effect of P = I − 2w wT on an arbitrary vector x.

We next demonstrate how a sequence of such Householder transformations performs the
QR factorization,

A = Q R = Q

R11 R12 . . . R1N

R22 . . . R2N

. . .
...

RN N

 Q QT = I (3.152)

Let us examine the first column of R that has a nonzero element only at the first component.
For any vector x ∈ �N , we can find a vector v, generating a Householder reflection P, that
zeros all but the first component of x:

Px =
[

I − 2
vvT

|v|2
]

x = x − 2(v · x)

|v|2 v =

b
0
...
0

 = be[1] (3.153)

As x − 2(v · x)|v|−2v = be[1],v must be a linear combination of x and e[1],

v = x + αe[1] (3.154)

As

|v|2 = (
x + αe[1]

) · (x + αe[1]
) = |x|2 + 2αx1 + α2

(3.155)
v · x = (

x + αe[1]
) · x = |x|2 + αx1

the Householder transformation acts on x as

Px = x − 2(|x|2 + αx1)

|x|2 + 2αx1 + α2

(
x + αe[1]

)

=
[

1− 2(|x|2 + αx1)

|x|2 + 2αx1 + α2

]
x −

[
2α(|x|2 + αx1)

|x|2 + 2αx1 + α2

]
e[1] (3.156)

We obtain Px = be[1] by satisfying

1 = 2
(|x|2 + αx1

)
|x|2 + 2αx1 + α2

⇒
α = ε|x|

ε = sign(x1) =
{ −1, x1 < 0

1, x1 ≥ 0
(3.157)

so that

Px = −ε|x|e[1] (3.158)

The QR method for computing all eigenvalues 131

Thus, we have an orthogonal matrix P = Q[1] such that Q[1] A,

Q[1]

 | |

a(1) . . . a[N]

| |

 =

 | |(

Q[1]a[1]
)

. . .
(
Q[1]a[N]

)
| |

=

R11 R12 . . . R1N

0 | |
... a(2,2) . . . a(2,N)

0 | |

 (3.159)

has all zero elements in the first column except at the (1,1) position. We next generate the
Householder reflection P[2] (in �N−1) that transforms a(2,2) ∈ �N−1 into a vector with all
zeros except for the first component. Then, we construct the N × N orthogonal matrix

Q[2] =
[

1 0
0 P [2]

]
(3.160)

such that

Q[2]
(
Q[1] A

) = [
1 0
0 P [2]

]

R11 R12 . . . R1N

0 | |
... a(2,2) . . . a(2,N)

0 | |

=

R11 R12 R13 . . . R1N

0 R22 R23 . . . R2N

0 0 | |
...

... a(3,3) . . . a(3,N)

0 0 | |

 (3.161)

This process is repeated until we have

[
Q[N−1] Q[N−2] . . . Q[2] Q[1]

]
A =

R11 R12 R13 . . . R1N

R22 R23 . . . R2N

R33 . . . R3N

. . .
...

RN N

 (3.162)

This yields the QR factorization after ∼N 3 FLOPs,

A = Q R Q = (
Q[1]

)T(
Q[2]

)T · · · (Q[N−2]
)T(

Q[N−1]
)T

(3.163)

which is implemented in MATLAB by the function qr.

Iterative QR method for computing all eigenvalues

Note that the upper triangular matrix R that we obtain from QR decomposition is not similar
to A and thus does not have the same eigenvalues. However, we can define a matrix A[1] that
is similar to A,

A = Q R A[1] = Q−1 AQ = QT AQ (3.164)

132 3 Matrix eigenvalue analysis

Applying this similarity transform iteratively, we define the rule

A[k] = Q[k] R[k] A[k+1] = (
Q[k]

)T
A[k] Q[k] = R[k] Q[k] (3.165)

As we demonstrate below for an example matrix, as k →∞, this sequence of matrices
becomes of block upper triangular form,

A[k→∞] =

R11 R12 R13 . . . R1P

R22 R23 . . . R2P

R33 . . . R3P

. . .
...

RP P

 (3.166)

where the submatrices along the diagonal, R11, R22, . . . , RPP, are either 1 × 1 or 2 × 2.
For the former case, this diagonal element is an eigenvalue of A. For the latter case, the
2 × 2 diagonal submatrix R j j has two eigenvalues that are complex conjugates of each
other (for real A) and that are eigenvalues of A. This iterative QR method concurrently
yields all eigenvalues of A, and the corresponding eigenvectors can then be computed from
(3.38).

Improving the efficiency of the QR method

In practice, we use a more complex algorithm than that above to reduce the computational
workload. For example, it is standard to use Householder reflections first to convert A to
upper Hessenberg form

A[0] =

a[0]
11 a[0]

12 a[0]
13 . . . a[0]

1 N

a[0]
21 a[0]

22 a[0]
23 . . . a[0]

2 N

a[0]
32 a[0]

33 . . . a[0]
3 N

. . .
. . .

...

a[0]
N ,N−1 a[0]

N N

(3.167)

Then, the work necessary to perform each subsequent QR factorization scales only as N 2

rather than N 3. There is only one nonzero element below the diagonal that can be zeroed
efficiently using Givens rotations, a transformation similar to that of Householder, but
that is designed to zero only a single component. For brevity, we do not consider these
modifications in detail, but refer the interested reader to Quateroni et al. (2000).

The convergence rate of the QR method can be improved using single-shift QR iterations,
in which the rule is now

Q[k] R[k] = A[k] − µI

A[k+1] = R[k] Q[k] + µI (3.168)

A common single-shift value is µ = a[k]
N N , but variable shifts are also used. Note that the QR

iterations above do not converge to the Schur decomposition, because A[k→∞] is only block
upper triangular, and still have may have nonzero elements in the diagonal immediately

The QR method for computing all eigenvalues 133

below the principal one. These lower nonzero elements can be removed, and convergence
accelerated for the case of complex eigenvalues, by using double-shift QR iterations. If at
iteration k, there appears to be a 2× 2 diagonal submatrix R j j with approximate eigenvalues
λ

[k]
j and λ̄

[k]
j , we perform the two-step iteration

Q[k] R[k] = A[k] − λ
[k]
j I

A[k+1] = A[k] Q[k] + λ
[k]
j I

(3.169)
Q[k+1] R[k+1] = A[k+1] − λ

[k]
j I

A[k+2] = R[k+1] Q[k+1] + λ
[k]
j I

and then resume single-shift iterations. For discussion of more complex, and efficient,
shifting strategies and algorithms for special classes of matrices (e.g. Hermitian), consult
Quateroni et al. (2000) and Stoer & Bulirsch (1993).

Example. QR method for a real 4 × 4 matrix

We now demonstrate the QR method for the real, anti-symmetric matrix

A =

4 0 −1 1
0 4 2 −1
1 −2 4 1
−1 1 −1 4

 (3.170)

that has the complex eigenvalues

λ1,2 = 4± 2.8059i λ3,4 = 4± 0.3564i (3.171)

and is generated (along with a working copy) by

A = [4 0 -1 1; 0 4 2 -1; 1 -2 4 1; -1 1 -1 4]; N = size(A,1);
A w = A;

A single-shift QR iteration is performed by

mu = A w(N,N); [Q,R] = qr(A w - mu*eye(N));
A w = R*Q +mu*eye(N);

We have the following first few values of A[k],

4.0 −1.0 −2.5 −0.3
1.0 4.0 0.6 −0.3
2.5 −0.6 4.0 −0.0
0.3 0.3 0.0 4.0

A[1]

→

4.0 −2.7 −0.8 0.0
2.7 4.0 0.1 0.1
0.9 −0.1 4.0 −0.3
−0.0 −0.1 0.3 4.0

A[2]

→

4.0 −2.8 −0.1 −0.0
2.8 4.0 0.0 −0.0
0.1 −0.0 4.0 0.4
0.0 0.0 −0.4 4.0

A[3]

(3.172)

134 3 Matrix eigenvalue analysis

The single-shift QR iterations yield upon convergence

A[k→∞] =

4 −2.8059 0 0
2.8059 4 0 0

0 0 4 0.3564
0 0 −0.3564 4

 =

[
R11 R12

0 R22

]
(3.173)

The eigenvalues of A are then computed easily from the diagonal 2 × 2 submatrices R11

and R22, where for each we have with b ∈ �,

∣∣R j j − λI
∣∣ = ∣∣∣∣ (4− λ) −b

b (4− λ)

∣∣∣∣ = (4− λ)2 + b2 = 0 (3.174)

The two roots are λ = 4± bi , yielding the eigenvalues of (3.171).

Normal mode analysis

We now provide an example in which eigenvalue analysis is of direct interest to a problem
from chemical engineering practice. Let us say that we have some structure (it could be
a molecule or some solid object) whose state is described by the F positional degrees of
freedom q ∈ �F and the corresponding velocities q̇. We have some model for the total
potential energy of the system U (q) and some model of the total kinetic energy K (q, q̇).
We wish to compute the vibrational frequencies of the structure. Such a normal mode
analysis problem arises when we wish to compute the IR spectra of a molecule (Allen &
Beers, 2005).

First, using the numerical optimization methods outlined in Chapter 5, we identify a state
q̂ that is a local minimum of the potential energy. That is, it has a lower potential energy
than any neighboring states, and as it is an extremum, ∇U |q̂ = 0 . We wish to describe
the system’s dynamics when it is perturbed slightly from this minimum energy state, and
so define δ = q − q̂ . Expanding U (q) about q̂ as a Taylor series, with ∂U/∂qm |q̂ = 0,

yields

U (q̂1 + δ1, . . . , q̂F + δF) ≈ U (q̂1, . . . , q̂F)+ 1

2

F∑
m=1

F∑
n=1

δm

(
∂2U

∂qm∂qn

∣∣∣∣
q̂

)
δn (3.175)

Defining the Hessian matrix H, containing the second derivatives of U(q),

Hmn = ∂2U

∂qm∂qn

∣∣∣∣
q̂

= ∂2U

∂qn∂qm

∣∣∣∣
q̂

= Hnm (3.176)

the Taylor series for U(q) in the vicinity of q̂ becomes

U (q̂1 + δ1, . . . , q̂F + δF) ≈ U (q̂1, . . . , q̂F)+ 1

2

F∑
m=1

F∑
n=1

δm Hmnδn (3.177)

H, which from (3.176) is real symmetric, also must be positive-semidefinite, as for a local
minimum q̂, U (q̂ + δ)−U (q̂) ≈ 1

2δ
T Hδ ≥ 0.

Normal mode analysis 135

Let us assume for the moment that each degree of freedom has the same effective mass
meff, so that the kinetic energy is

K (q, q̇) = meff

2

F∑
k=1

q̇2
k (3.178)

The dynamics of q are governed by the equations of motion

meff
d2q j

dt2
= meff

d2δ j

dt2
= − ∂

∂δ j
U (q̂1 + δ1, . . . , q̂F + δF) (3.179)

which, in the vicinity of the local minimum, reduce to

meff
d2δ j

dt2
= − ∂

∂δ j

[
U (q̂1, . . . , q̂F)+ 1

2

F∑
m=1

F∑
n=1

δm Hmnδn

]

meff
d2δ j

dt2
= −1

2

F∑
n=1

Hjnδn − 1

2

F∑
m=1

δm Hmj = −
F∑

n=1

Hjnδn (3.180)

This system of second-order ODEs is written more compactly as

meff
d2

dt2
q = −Hδ (3.181)

The eigenvalues and eigenvectors of the Hessian matrix satisfy

Hw [j] = λ j w
[j] j = 1, 2, . . . , F (3.182)

Since the Hessian is real symmetric, the eigenvectors are mutually orthogonal, and so form
a convenient basis set for representing any vector. We therefore write a trial form of δ(t) as
the linear combination

δ(t) = c1(t)w [1] + · · · + cF (t)w [F] d2

dt2
q = c̈1w [1] + · · · + c̈F w [F] (3.183)

The dynamical equations then become

meff
[
c̈1w [1] + · · · + c̈F w [F]

] = −H
[
c1w [1] + · · · + cF w [F]

]
meffc̈1w [1] + · · · + meffc̈F w [F] = −[

c1 Hw [1] + · · · + cF Hw [F]
]

= −[
c1λ1w [1] + · · · + cFλF w [F]

]
(3.184)

Equating the left- and right-hand sides separately in each eigenvector direction yields the
following uncoupled set of equations for each c j (t),

meff
d2c j

dt2
= −λ j c j (3.185)

We propose a trial form of the solution

c j (t) = a j sin(ω j t) (3.186)

and substitute it into the differential equation

d2c j

dt2
= a jω

2
j sin(ω j t) = −m−1

eff λ j a j sin(ω j t) = −m−1
eff λ j c j (3.187)

136 3 Matrix eigenvalue analysis

to show that the trial form of the solution is valid. The angular vibrational frequency of the
normal mode is then

ω j =
√

λ j

meff
(3.188)

lattice 2D vib.m computes the normal modes of a 2-D lattice of point masses connected by
harmonic springs. animate 2D vib.m produces a movie of the oscillations for each mode. A
derivation of this lattice model and a discussion of the results is provided in the supplemental
material in the accompanying website.

Relaxing the assumption of equal masses

Above we have assumed that each degree of freedom has an equal effective mass. We now
relax this assumption, using Lagrange’s equation of motion,

d

dt

(
∂L

∂q̇ j

)
= ∂L

∂q j
(3.189)

where the Lagrangian, the kinetic energy minus the potential energy, is

L(q, q̇) = K (q, q̇)−U (q) (3.190)

For a system of point masses, each described by Cartesian coordinates, Lagrange’s equa-
tion reduces to Newton’s second law of motion. For small departures about a minimum
energy state, Lagrange’s equations of motion typically generate a system of the linearized
form

M

[
d2

dt2
δ

]
= −Hδ (3.191)

in which the mass matrix M is symmetric, positive-definite, but not necessarily diagonal.
Since M is nonsingular, we can write

d2

dt2
δ = −M−1 Hδ (3.192)

We thus must perform normal mode analysis on the matrix M−1H, where

M−1 Hw [j] = λ j w
[j] ⇒ Hw [j] = λ j Mw [j] (3.193)

The generalized eigenvalue problem

A generalized eigenvalue problem, such as (3.193), is of the form

Aw = λBw (3.194)

where B is a nonsingular matrix. While there exist general techniques to convert (3.194)
into a standard eigenvalue problem using Schur decompositions, we here describe a sim-
pler approach that may be used when B is positive-definite and A is real symmetric, as
they are for the problem above with B = M and A = H. We compute the Cholesky

Eigenvalue problems in quantum mechanics 137

factorization of B,

B = L LT (3.195)

and write

Aw = λL LTw (3.196)

We now define the transformation

z = LTw w = LT(−1)z (3.197)

to obtain the corresponding eigenvalue problem[
L−1 ALT(−1)

]
z = λz (3.198)

If A is symmetric, so is L−1ALT(−1)
. As L is lower triangular, we can compute L−1 very

quickly column-by-column by forward substitution

L L−1 = L

 | |

l̃ [1] . . . l̃ [N]

| |

 = I =

 | |

e[1] . . . e[N]

| |

 L l̃

[j] = e[j]

j = 1, 2, . . . , N

(3.199)
Once we obtain the eigenvalues λj and eigenvectors z[j] of L−1ALT (−1)

, we compute the
corresponding generalized eigenvectors

w [j] = LT(−1)z[j] (3.200)

eig and eigs allow the use of an optional nonsingular matrix B in the problem Aw = λBw
(type help eig or help eigs for further details). For

A =

 2 1 −1

1 4 −2
−1 −2 6

 B =

 2 −1 0
−1 2 −1
0 −1 2

 (3.201)

the generalized eigenvalues satisfying Aw = λBw are computed by

A = [2 1 -1; 1 4 -2; -1 -2 6];
B = [2 -1 0; -1 2 -1; 0 -1 2];
e = eig(A,B),
e =

0.5664
3.1128
4.8207

Eigenvalue problems in quantum mechanics

Eigenvalue analysis lies at the heart of quantum mechanics. Here we consider only a simple
example involving a single electron in one dimension, but the numerical approach is the
same as that used in more realistic 3-D calculations of atoms and molecules. We wish to

138 3 Matrix eigenvalue analysis

compute the energy states of a single electron in a 1-D external potential field that has the
spatial periodicity

V (x + n2P) = V (x) n = 0,±1,±2, . . . (3.202)

Such a periodic system may be interpreted to be a 1-D “crystal.”
The probability of finding an electron in [x, x + dx] is |ψ(x)|2dx, where ψ(x) is the wave-
function of the electron, satisfying the Schrödinger equation,

− h̄2

2me

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x) (3.203)

me is the mass of an electron and h̄ = h/2π where h is Planck’s constant. E is the energy of
the electron. For a more detailed discussion, consult Leach (2001) and Atkins & Friedman
(1989).

Numerical solution of a differential equation eigenvalue problem

In (3.203), we have a differential equation eigenvalue problem, but we have been study-
ing techniques to solve matrix eigenvalue problems. To convert this problem into a matrix
one, we expand ψ(x) as a linear combination of basis functions that satisfy the appro-
priate boundary conditions; here the periodicity condition ψ(x + n2P) = ψ(x), since
if V(x) is periodic, we expect ψ(x) to be also. We choose a plane wave basis set with
members

χm(x) = eiqm x = cos(qm x)+ i sin(qm x) (3.204)

The reasoning behind this choice of basis set is discussed in Chapter 9. Periodicity is satisfied
if the allowable wavenumbers qm satisfy

qm = mπ

P
m = 0,±1,±2, . . . (3.205)

Using this basis, we write a trial form of the wavefunction as

ψ(x) =
N∑

m=−N

bmχm(x) =
N∑

m=−N

bmeiqm x (3.206)

We wish to compute the coefficients {bm} that satisfy (3.203) best and thus truncate the
expansion to order N to make the problem dimension finite. Substituting this expansion into
(3.203), we have

N∑
m=−N

bm

[
− h̄2

2me

d2

dx2
χm(x)+ V (x)χm(x)

]
= E

N∑
m=−N

bmχm(x) (3.207)

We now multiply this differential equation by the complex conjugates of each basis function,
χ∗

n (x), to obtain a set of equations:

N∑
m=−N

bmχ∗
n (x)

[
− h̄2

2mc

d2

dx2
χm(x)+ V (x)χm(x)

]
= E

N∑
m=−N

bmχ∗
n (x)χm(x) (3.208)

Eigenvalue problems in quantum mechanics 139

We next integrate each of these equations over [0, 2P] to obtain a set of algebraic
equations:

N∑
m=−N

bmhnm = E
N∑

m=−N

bmsnm (3.209)

The coefficients snm are

snm =
∫ 2P

0
χ∗

n (x)χm(x)dx (3.210)

and the coefficients hnm are

hnm =
∫ 2P

0
χ∗

n (x)[Ĥχm(x)]dx (3.211)

where the Hamiltonian operator is

Ĥχ = − h̄2

2me

d2

dx2
χ (x)+ V (x)χ (x) (3.212)

We compute these integrals shortly, but first let us consider the structure of (3.209), which
we write as

N∑
m=−N

hnmbm = E
N∑

m=−N

snmbm n = 0,±1,±2, . . . ,±N (3.213)

Let us define the new indices

p = m + N + 1 m = 0,±1,±2, . . . ,±N p = 1, 2, . . . , 2N + 1
q = n + N + 1 n = 0,±1,±2, . . . ,±N q = 1, 2, . . . , 2N + 1

(3.214)

so that, with B= 2N+ 1, we define a B× B overlap matrix S, a B× B Hamiltonian matrix
H, and a coefficient vector c ∈ C B , such that

Hpq = hmn Spq = smn cp = bm (3.215)

The system of equations (3.213) then becomes
B∑

p=1

Hqpcp = E
B∑

p=1

Sqpcp q = 1, 2, . . . , B (3.216)

This is the qth row of the generalized matrix eigenvalue problem

Hc = E Sc (3.217)

H and S are both Hermitian and S is also positive-definite. Let the energy eigenvalues be
Ek with Hc[k] = Ek Sc[k]. These Ek are the allowable energy states of the system, whose
corresponding normalized wavefunctions are

ψ [k](x) = ϕ[k](x)∫ 2P
0

∣∣ϕ[k](x)
∣∣2dx

ϕ[k](x) =
B∑

p=1

c[k]
p χm=p−N−1(x) (3.218)

with the corresponding electron probability densities

ρ[k]
e (x) = ∣∣ψ [k](x)

∣∣2 (3.219)

140 3 Matrix eigenvalue analysis

We first must calculate the integrals for the matrix elements of S and H, and this typically
comprises a significant fraction of the effort of quantum calculations. First, we consider the
elements of the overlap matrix

Spq = smn =
∫ 2P

0
χn

∗(x)χm(x)dx (3.220)

Substituting for the plane wave basis functions,

Spq = smn =
∫ 2P

0
e−iqn x eiqm x dx =

∫ 2P

0
exp

[
i
(πx

P

)
(m − n)

]
dx (3.221)

Defining θ = πx/P, this becomes

Spq = smn =
(

P

π

)∫ 2π

0
eiθ (m−n)dθ = 2Pδmn = 2Pδpq (3.222)

Thus, the overlap matrix is merely S = (2P)I, I being the identity matrix.
We next compute the elements of the Hamiltonian matrix, which we break into two contri-
butions, H = T + V , where

Tpq = −
(

h̄2

2me

)∫ 2P

0
χ∗

n (x)
d2χm

dx2
dx (3.223)

and

Vpq =
∫ 2P

0
χ∗

n (x)V (x)χm(x)dx (3.224)

In general, we must compute the elements of V numerically. A discussion of numerical
integration is not given until the next chapter, so here we merely note that we use the trapezoid
method (trapz in MATLAB) in which we evaluate the integrand f (x) = χn

∗(x)V (x)χm(x)
at nG grid points,

x j = (j − 1)(�x) �x = 2P

nG − 1
j = 1, 2, . . . , nG (3.225)

We then approximate the integrals (3.224) using the quadrature rule∫ 2P

0
f (x)dx =

nG−1∑
j=1

∫ x j+1

x j

f (x)dx ≈
nG−1∑
j=1

[
f (x j+1)+ f (x j)

2

]
(�x) (3.226)

For the selected basis functions, we can compute the elements of T analytically. Substituting
into (3.223) for the basis functions,

Tpq = −
(

h̄2

2me

)∫ 2P

0
e−iqn x d2

dx2
eiqm x dx =

(
h̄2

2me

)
q2

m

∫ 2P

0
e−iqn x eiqm x dx (3.227)

Using qm = mπ/P and
∫ 2P

0 ei(qm−qn)x dx = 2Pδmn , we have

Tpq =
(

h̄2m2π2

Pme

)
δmn m = p − N − 1 n = q − N − 1 (3.228)

Singular value decomposition (SVD) 141

1

12

1

2

11 2

ee
ct

rn
 d

en
si

t

Figure 3.7 Plots of the electron densities in the ground state (solid) and first two excited states
(dash-dot) for an electron in a 1-D array of square well potentials.

quantum 1D.m computes the lowest energy states for a well potential

V (0 ≤ x ≤ 2P) =
{−Ewell,

(
P − w

/
2
) ≤ x ≤ (

P + w
/

2
)

0, otherwise
(3.229)

w is the width of the energy well, and Ewell is its depth. Plots of the electron densities for
the ground state and first two excited states with P = 1, w = 1, Ewell = 5, and N = 25
are shown in Figure 3.7. The lowest energy eigenstates are computed using eigs with the
‘SR’ keyword.

Singular value decomposition (SVD)

With the usefulness of eigenvalue analysis, we might wonder if it can be extended to the
case of nonsquare matrices of general dimension M×N ,

A =

a11 a12 a13 . . . a1N

a21 a22 a23 . . . a2N

a31 a32 a33 . . . a3N
...

...
...

...
aM1 aM2 aM3 . . . aM N

 (3.230)

In fact, such an extension exists. For a M×N real matrix A, we can always generate the
N×N square matrix ATA that is symmetric and positive-semidefinite; i.e., all eigenvalues
are real and are greater than or equal to zero. Let the eigenvalues of ATA be µ1, µ2, . . . ,
µN. We then define the singular values of A as

σ1 = √
µ1 σ2 = √

µ2 . . . σN = √
µN (3.231)

142 3 Matrix eigenvalue analysis

Let us assume that our matrix has more rows than columns, M ≥ N . We then can write A
in the form of a Singular Value Decomposition (SVD)

A = W�V T (3.232)

� is a M × N diagonal matrix containing the singular values, W is an orthogonal M × M
matrix whose columns are the M left singular vectors of A, and V is an orthogonal N × N
matrix whose columns are the N right singular vectors of A.

� =

σ1

σ2

. . .

σN

0
...
0

W =

 | | |

w [1] w [2] . . . w [M]

| | |

W T = W−1

V =

 | | |
v[1] v[2] . . . v[N]

| | |

 (3.233)

For M < N, the SVD also exists, but now � is

� =

σ1

σ2

. . .

σM 0 0 0

 (3.234)

and σM+1 = · · · = σN = 0. As AT A = (V �TW T)(W�V T) = V �T(W TW)�V T, we note
that as W is orthogonal, W TW = IM , IM being the M × M identity matrix, and thus we
obtain the Jordan normal form for ATA

AT A = V (�T�)V T (3.235)

Therefore, �T� = � is a diagonal matrix containing the eigenvalues of ATA, and the right
singular vectors of A are the eigenvectors of ATA,

AT Av[j] = σ 2
j v

[j] (3.236)

Previously, we have defined the rank of a square matrix as the number of linearly-independent
columns (or rows); however, we can now extend this definition and provide a means for its
calculation.

Definition The rank of an M × N matrix A is the number of its nonzero singular values.

Above we have treated the case of a real matrix A. For a complex matrix A, the SVD is
A = U�V H, where now U and V are unitary. � contains the nonnegative singular values,
as is the case when A is real.

Singular value decomposition (SVD) 143

SVD analysis and the existence/uniqueness properties of linear systems

Let us examine how SVD aids detecting the existence and uniqueness properties of linear
systems. As noted in Chapter 1, the nature of the null space (kernel) of A and of the
range are vitally important; however, we have not described how we may identify these
subspaces for a particular matrix. Let A be a real, square N × N matrix, with the SVD
A = W�V T,

A = W

σ1

σ2

. . .

σN

— (v[1])T —
— (v[2])T —

...
— (v[N])T —

=

 | | |

w [1] w [2] . . . w [N]

| | |

— σ1(v[1])T —
— σ2(v[2])T —

...
— σN (v[N])T —

 (3.237)

Therefore, we can write

Ax = W

— σ1(v[1])T —
— σ2(v[2])T —

...
— σN (v[N])T —

x1

x2
...

xN

=

 | | |

w [1] w [2] . . . w [N]

| | |

σ1
(
v[1] ·x)

σ2
(
v[2] ·x)

...
σN

(
v[N] ·x)

 (3.238)

The right singular vectors {v[1],v[2], . . . ,v[N]} are orthonormal. Therefore, any vector
x ∈ �N can be written as the linear combination

x =
N∑

j=1

(
v[j] · x

)
v[j] (3.239)

Let us say the first r singular values of A are zero and that the rest are nonzero. We want to
identify the null space KA and range RA of A. To do so, we break the linear contribution for
x into two parts

x =
r∑

j=1
σ j=0

(
v[j] · x

)
v[j] +

N∑
j=r+1
σ j >0

(
v[j] · x

)
v[j] (3.240)

Let us now define a second vector y ∈ �N that is a linear combination solely of the right
singular vectors for the zero singular values,

y =
r∑

j=1
σ j=0

(
v[j] · y

)
v[j] (3.241)

144 3 Matrix eigenvalue analysis

and write Ay in the form of (3.238),

Ay = W

σ1
(
v[1] · y

)
...

σr

(
v[r] · y

)
σr+1

(
v[r+1] · y

)
...

σN

(
v[N] · y

)

= W

(0)
(
v[1] · y

)
...

(0)
(
v[r] · y

)
σr+1(0)

...
σN (0)

= W 0 = 0 (3.242)

Thus, the right singular vectors for the zero singular values form an orthonormal basis for
the null space (kernel) of A,

K A = span
{
v[1], . . . ,v[r]

}
σ1 = . . . = σr = 0 dim(K A) = r (3.243)

We obtain a basis for the range of A by continuing the calculation of Ax,

Ax =

 | |

w [1] . . . w [N]

| |

σ1
(
v[1] · x

)
σ2
(
v[2] · x

)
...

σN

(
v[N] · x

)

=

w [1]
1 σ1

(
v[1] · x

)+ · · · + w [N]
1 σN

(
v[N] · x

)
w [1]

2 σ1
(
v[1] · x

)+ · · · + w [N]
2 σN

(
v[N] · x

)
...

w [1]
N σ1

(
v[1] · x

)+ · · · + w [N]
N σN

(
v[N] · x

)

 (3.244)

to obtain

Ax =
N∑

j=1

σ j

(
v[j] · x

)
w [j] (3.245)

If σ1 = · · · = σr = 0 and σ j > 0 for j = r + 1, . . . , N, then

Ax =
N∑

j=r+1
σ j >0

σ j

(
v[j] · x

)
w [j] (3.246)

Thus, any Ax ∈ �N can be written as linear combination of the left singular vec-
tors {w [r+1], . . . , w [N]}, so that the range of A is

RA = span
{
w [r+1], . . . , w [N]

}
σ j∈ [r+1,N] > 0 dim(K A) = N − r (3.247)

The right and left singular vectors thus provide orthonormal basis sets for the kernel and
range respectively,

K A = span
{
v[j]

∣∣σ j = 0
}

RA = span
{
w [j]

∣∣σ j > 0
}

(3.248)

For Ax = b, if A is singular, we can check easily for the existence of solutions using SVD.
If b ∈ �A, there exist an infinite number of solutions

x = z +
N∑
j=1

σ j=0

c jv
[j] c j ∈ � (3.249)

Singular value decomposition (SVD) 145

z is any particular solution satisfying Az= b. To obtain a particular solution from the SVD,
we note that if A were nonsingular, the unique solution would be

x = A−1b = (W�V T)−1b = V T(−1)�−1W−1b = V �−1W Tb (3.250)

where

�−1 = diag
(
σ−1

1 , . . . , σ−1
r , σ−1

r+1, . . . , σ
−1
N

)
(3.251)

Written in terms of the left and right singular vectors, the solution is

x =
N∑

j=1

(
w [j] · b

)
σ−1

j v[j] (3.252)

If there exist zero singular values σ j = 0, �−1 and A−1 = V �−1W T do not exist, and this
formula diverges due to division by zero. We can, however, define the pseudo (generalized)
inverse of A, in which we replace the infinite values of σ j

−1 with zero:

Ã
−1 = V �̃−1W T �̃−1 = diag

(
0, . . . , 0, σ−1

r+1, . . . , σ
−1
N

)
(3.253)

For, b ∈ �A, b must lie in span{w [j]|σ j > 0}, and as all w [j] are orthonormal, w [j] · b =
0 for all σ j = 0. Therefore, by (3.252), we still have Az = b when b ∈ �A,

z =
N∑
j=1

σ j >0

(
w [j] · b

)
σ−1

j v[j] = Ã−1b (3.254)

The general solution, for b ∈ �A, is then

x =
N∑
j=1

σ j >0

(
w [j] · b

)
σ−1

j v[j] +
N∑
j=1

σ j=0

c jv
[j] c j ∈ � (3.255)

Least-squares approximate solutions

You may ask, what happens if we apply the pseudo-inverse to a vector b that is not in
the range of A? Such is often the case for an overdetermined system with more equations
than unknowns, Ax = b, x ∈ �N , b ∈ �M>N . Then, z = Ã−1b is not a solution, Az �= b.
However, it is the “closest thing to a solution,” as it minimizes the residual norm,

|Az − b| ≤ |Ay − b| ∀y ∈ �N (3.256)

As this also means minimizing |Az − b|2 = (Az − b) · (Az − b), z = Ã−1b is said to be
the least-squares approximate solution. The SVD solution, z = Ã−1b, exists for systems
Ax = b with both square and nonsquare A matrices.

This property makes SVD very useful in statistics. Let us fit a linear model

y = β1x1 + β2x2 + · · · + βN xN (3.257)

to a data set of M measurements of y, y[k], for known {x1
[k], . . . , xN

[k]}. From the data, let
us form the M× N design matrix X, the response vector y ∈ �M, and the vector of unknown

146 3 Matrix eigenvalue analysis

parameters β ∈ �N,

X =

x [1]
1 x [1]

2 . . . x [1]
N

x [2]
1 x [2]

2 . . . x [2]
N

...
...

...
x [M]

1 x [M]
2 . . . x [M]

N

 y =

y[1]

y[2]
...

y[M]

 ∈ �N β =

β1

β2
...

βN

 ∈ �N (3.258)

Using the rules of matrix multiplication, we can write the set of relationships y[k] = β1x [k]
1 +

β2x [k]
2 + · · · + βN x [k]

N as y = Xβ

y[1]

y[2]

...
y[M]

 =

x [1]
1 x [1]

2 . . . x [1]
N

x [2]
1 x [2]

2 . . . x [2]
N

...
...

...

x [M]
1 x [M]

2 . . . x [M]
N

β1

β2
...

βN

=

β1x [1]
1 + β2x [1]

2 + · · · + βN x [1]
N

β1x [2]
1 + β2x [2]

2 + · · · + βN x [2]
N

...

β1x [M]
1 + β2x [M]

2 + · · · + βN x [M]
N

 (3.259)

In Chapter 1, we computed the coefficients β of a linear model by solving the system
XTXβ = XT y, obtained by premultiplying y = Xβ by XT. We also can obtain β using the
pseudo-inverse from SVD,

β = V �̃−1W T y (3.260)

The advantage of the SVD approach becomes evident when we do not have sufficient
data to determine all coefficients β j. Then, the right singular vectors {v[j]|σ j = 0} ∈
�N provide information about the “missing” data points x that are necessary to deter-
mine all β j. In particular, we should add new measurements {x[N+1], . . . , x[N+P]} such
that

span
{
v[j]|σ j = 0

} ⊂ span
{

x[1], . . . , x[N], x[N+1], . . . , x[N+P]
}

(3.261)

Then, the new design matrix with these P additional measurements will have no zero singular
values, such that all coefficients β j can be estimated. Equation (3.256) tells us that the SVD
solution (3.260) is the least-squares estimate that minimizes the sum of squared errors
|Xβ − y|2. This subject will be discussed further in Chapter 8.

SVD in MATLAB

We wish to fit the linear model y = β0 + β1θ1 + β2θ2 to the data in Table 3.1. Entering the
corresponding design matrix and response vector,

X = [1 0 0; 1 1 1; 1 2 2; 1 3 3];
y = [1; 6; 11; 16];

we compute the SVD X = USVH

Singular value decomposition (SVD) 147

Table 3.1 Measured data for fitting linear
model with SVD

measured y θ1 θ 2

1 0 0
6 1 1
11 2 2
16 3 3

[U,S,V] = svd(X),
U = 0.0547 0.8349 -0.5000 0.2236

0.2979 0.4596 0.8333 0.0745
0.5412 0.0843 -0.1667 -0.8199
0.7844 -0.2909 -0.1667 0.5217

S = 5.5405 0 0
0 1.1415 0
0 0 0.0000
0 0 0

V = 0.3029 0.9530 0
0.6739 -0.2142 -0.7071
0.6739 -0.2142 0.7071

We see from S that the third singular value is zero, and identify the “missing” data from the
corresponding right singular vector

v[3] = [0− 0.7071 0.7071]T (3.262)

This is clearly related to the lack of any data points in Table 3.1 that vary θ1 and θ2 by
different amounts. We ensure (3.261) by adding a fifth data point x[5] = x[3] + cv[3], yielding
for c−1 = 0.7071, x1 = 2 − 1 = 1 and x2 = 2 + 1 = 3. For this x[5], we measure y[5] = 12,
such that the new data set is

X = [1 0 0; 1 1 1; 1 2 2; 1 3 3; 1 1 3];
y = [1; 6; 11; 16; 12];

The singular values of X are now all nonzero,

s=svd(X),
s =

6.3373
1.2530
1.1264

The fitted parameters are computed by

[U,S,V] = svd(X);
S inv = zeros(size(S’));
S inv(1:3,1:3) = inv(S(1:3,1:3)),

148 3 Matrix eigenvalue analysis

S inv =
0.1578 0 0 0 0
0 0.7981 0 0 0
0 0 0.8878 0 0

b = V*S inv*U
′ *y,

b =
1.0000
2.0000
3.0000

Thus, the fitted parameters of the linear model are β0 = 1, β1 = 2, β2 = 3. This approach
to the design and analysis of data sets for parameter estimation will be considered again in
Chapter 8.

Computing the roots of a polynomial

The eigenvalues of a matrix A are roots of the characteristic polynomial of degree N, det(A
− λI) = 0. Therefore, we can compute the roots of any polynomial of degree N

pN (x) = aN x N + aN−1x N−1 + · · · + a1x + a0 (3.263)

by calculating the eigenvalues of a matrix A for which det(A − λI) = pN (λ). From expan-
sion by minors in the first row, the auxiliary matrix for pN (x) is

A =

(−aN−1/aN) (−aN−2/aN) . . . (−a1/aN) (−a0/aN)
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0

 (3.264)

For example, consider the polynomial of degree three

p3(x) = x3 − 3x2 + x − 3 (3.265)

The auxiliary matrix is

A =

3 −1 3

1 0 0
0 1 0

 (3.266)

The eigenvalues of this matrix are

λ1 = 3 λ2 = i λ3 = −i (3.267)

It is easy to show that these eigenvalues are in fact roots of (3.265):

p3(3) = (3)3 − 3(3)2 + (3)− 3 = 27− 27+ 3− 3 = 0
p3(i) = (i)3 − 3(i)2 + (i)− 3 = −i + 3+ i − 3 = 0 (3.268)
p3(−i) = (−1)3 − 3(−i)2 + (−i)− 3 = i + 3− i − 3 = 0

In MATLAB, this technique is employed by roots.

Problems 149

MATLAB summary

The use of MATLAB to compute eigenvalues was discussed earlier in this chapter; therefore,
here only a brief summary is provided. A matrix W, whose column vectors are eigenvec-
tors of A, and a diagonal matrix D, whose principal diagonal contains the corresponding
eigenvalues, are returned by

[W,D] = eig(A);

With only a single output argument, eig returns a vector of eigenvalues. If only a few extremal
eigenvalues are desired, use eigs. For example, the five largest-magnitude eigenvalues of A
and the corresponding eigenvectors are returned by

[W,D] = eigs(A,5, ‘LM’);

Other options include computing the smallest magnitude (‘SM’), largest and smallest real
part (‘LR’, ‘SR’), or the eigenvalues closest to a specified target shift value. Type help eigs,
or consult the earlier discussion of this chapter, for further details.

The SVD A = U SV H is computed by

[U,S,V] = svd(A);

The condition number is computed by cond and condest; the norm by norm and normest;
and the rank by rank. Eigenvalue methods are used to compute all roots of a polynomial by
roots.

Problems

3.A.1. From Gershgorin’s theorem, derive lower and upper bounds on the possible eigen-
values of the matrix

A =

1 0 3

0 2 1
3 1 −1

 (3.269)

3.A.2. Compute by hand the eigenvalues and eigenvectors of (3.269), and check your results
using MATLAB.

3.A.3. Consider the following matrices,

A =

0 −1 −2 1
−1 2 0 4
−2 0 3 0
1 4 0 −1

 B =

 6 2 1

0 5 −1
−1 3 2

(3.270)

C =
[

3 2
1 −1

]
D =

0 −1 0

1 0 0
0 0 1

150 3 Matrix eigenvalue analysis

2P

V(x)

Ewell a

w w

E = 0

x1 = P − (a + w)
2

x2 = P + (a + w)
2

Figure 3.8 Double-well potential for a 1-D quantum mechanics problem.

(a) Without computing the actual eigenvalues, can you tell if any of the matrices above must
have all real eigenvalues? Explain why you make this judgement.

(b) For each of those guaranteed to have all real eigenvalues, provide upper and lower
bounds on the eigenvalues.

(c) Show that D is unitary.
(d) Compute by hand the eigenvalues and unit-length eigenvectors of C.

3.A.4. Consider a random 4×4 matrix generated by A = rand(4). Similarly to (3.170)–
(3.174) use the double-shift iterative QR method to find its eigenvalues, reporting each
intermediate matrix A[k]. Then, compute ATA and repeat the calculation, demonstrating that
its eigenvalues are real. Once the eigenvalues of A and ATA have been calculated, compute
their eigenvectors, and demonstrate that those of ATA are orthogonal. You may use MATLAB
to solve linear systems and perform the QR decomposition at each iteration.

3.B.1. Modify quantum 1D.m to compute the lowest-energy states for the double-well
potential system shown in Figure 3.8, with the parameters

P = 10 a = 2 w = 1 Ewell = 10

3.B.2. Consider the positive-definite matrix A, obtained by discretizing the Poisson equation
−∇2ϕ = f in d dimensions on a hypercube grid of N d points, with the following nonzero
elements in each row for �x j = 1,

Akk = 2d Ak,k±N m = −1 m = 0, 1, . . . , d − 1 (3.271)

Plot as functions of N the largest and smallest eigenvalues and the condition number for
d = 1, 2, 3. For d = 3, extend the calculation to relatively large values of N by not storing
the matrix (even in sparse format) but rather by merely supplying a routine that returns Av
given an input value of v.

3.B.3. We wish to fit the model y = β0 + β1θ1 + β2θ2 to the data of Table 3.2. Compute the
SVD of the design matrix, and show that the data are sufficient to determine all parameters
in the proposed model. Then, compute the best fit of the parameters to the data. NOTE:
The “ \” linear solver of MATLAB returns the least squares solution for overdetermined
systems.

3.B.4. It is common in mechanics to describe a rotation in �3 by its
three Euler angles (ϕ, θ, ψ), 0 < ϕ < 2π, 0 < θ < π, 0 < ψ < 2π . The corresponding

Problems 151

Table 3.2 Data for fitting quadratic two-variable model

k 1 2 3 4 5 6 7 8

θ1 0 1 1 1 2 2 2 0
θ2 1 0 1 2 1 2 0 2
y 1.53 1.11 2.83 4.39 4.02 5.92 2.00 3.23

r

r

r 1 r 2

r

r

2

2 2

1 1

2

2

2
2

2

1

a
a

a

a

a

a

Figure 3.9 Molecule in two dimensions with bond and angle spring energy models.

transformation involves a rotation of angle ϕ about the z-axis, followed by a rotation of θ

about the new x-axis, followed by a rotation of angle ψ about the new z-axis. Using the
notation, Cψ = cosψ, Sϕ = sin ϕ, etc., the orthogonal matrix for this rotation is

Q =

 (CψCϕ − SψCθ Sϕ) (−Cψ Sϕ − SψCθ Sϕ) (Sψ Sθ)

(SψCϕ + CψCθ Sϕ) (−Sψ Sϕ + CψCθCϕ) (−Cψ Sθ)
(Sθ Sϕ) (SθCϕ) (Cθ)

 (3.272)

Write a MATLAB routine that takes a vector v and the set of three Euler angles, and returns
the rotated vector. What are the vectors that e[j], j= 1, 2, 3, are transformed into by a rotation
with ϕ = π/4, θ = π/4, ψ = π/4?

3.C.1. Consider the simple ethylene-like 2-D “molecule” in Figure 3.9 whose six atoms are
located at the coordinates r [α] = [xα yα]T, α = 1, 2, . . . , 6. For simplicity, we neglect here
any out-of-plane distortion, and compute the vibrational frequencies of the molecule from
a proposed energy model involving harmonic springs. There are two types of springs: bond
springs and angle springs. For each pair of bonded atoms α and β, we have a bond-stretching
contribution to the potential energy,

U [b]
αβ

(
r [α], r [β]

) = 1
2 Kb[rαβ − l]2 rαβ =

∣∣r [β] − r [α]
∣∣ (3.273)

that helps to maintain the distance at the natural bond length l. The quantity Kb is the
harmonic spring constant for this bond-stretching term. In Figure 3.9, the bond-stretching
springs are shown as solid lines, and there are two types, with

kb1 = 200 l1 = 1.5
kb2 = 100 l2 = 1

(3.274)

The angle-bending springs are shown in Figure 3.9 as dotted lines, and help to preserve the

152 3 Matrix eigenvalue analysis

angles at their natural values of θa = 2π/3. Let θαβγ be

θαβγ

(
r [α], r [β], r [γ]

) = acos

{
r [αβ] · r [γβ]∣∣r [αβ]

∣∣ ∣∣r [γβ]
∣∣
}

r [αβ] = r [β] − r [α]

r [γβ] = r [β] − r [γ] (3.275)

We resist bending of this angle away from its natural value θa = 2π/3 by adding to the
potential energy an angle-bending contribution

U [a]
αβγ

(
r [α], r [β], r [γ]

) = 1
2 Ka

[
θαβγ

(
r [α], r [β], r [γ]

)− θa
]2

(3.276)

For each angle in the energy model for this 2-D molecule, we use

Ka = 1 θa = 2π/3 (3.277)

For a real molecule, we would include additional terms from van der Waal’s and electro-
static nonbonded interactions, but here for simplicity we consider only the bonded energy
contributions. Let the coordinate vector be

q = [x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6]T (3.278)

The potential energy of the molecule is

U (q) = U [b]
12 +U [b]

13 +U [b]
14 +U [b]

25 +U [b]
26

+U [a]
213 +U [a]

214 +U [a]
314 +U [a]

125 +U [a]
126 +U [a]

526 (3.279)

and the kinetic energy is

K (q, q̇) = m1

∣∣ṙ [1]
∣∣

2
+ m1

∣∣ṙ [2]
∣∣

2
+ m2

∣∣ṙ [3]
∣∣

2
+ m2

∣∣ṙ [4]
∣∣

2
+ m2

∣∣ṙ [5]
∣∣

2
+ m2

∣∣ṙ [6]
∣∣

2
(3.280)

where m1 = 10 and m2 = 1. We can then compute the mass matrix M such that

K (q, q̇) = 1
2 q̇T M q̇ (3.281)

Your task is to write a MATLAB program that computes the vibrational frequencies, through
the following steps:

(a) Write a routine that sets the atomic positions, with r[1] = 0, such that all bond lengths
and angles take their natural values. This is a minimum potential energy state. Store
the results as a state vector q̂ .

(b) Write a routine that returns, for input q, the potential energy U(q).
(c) Using the routine from (b), write a routine to compute the elements of the Hessian

matrix

[H (q̂)]mn = [H (q̂)]nm = ∂2U

∂qmqn

∣∣∣∣
q̂

(3.282)

This can be done numerically by finite differences,

[H (q̂)]mn = ∂

∂qm

(
∂U

∂qn

)∣∣∣∣
q̂

≈ (∂U/∂qn)|q̂+εe[m] − (∂U/∂qn)|q̂−εe[m]

2ε
(3.283)

Problems 153

where

|(∂U/∂qn)|q̂±εe[m] = U
(
q̂ ± εe[m] + εe[n]

)−U
(
q̂ ± εe[m] − εe[n]

)
2ε

(3.284)

Thus, we have the finite difference approximation, accurate for small ε,

[H (q̂)]mn = [Umn(ε, ε)−Umn(ε,−ε)]− [Umn(−ε, ε)−Umn(−ε,−ε)]

4ε2
(3.285)

Umn(ε1, ε2) ≡ U
(
q̂ + ε1e[m] + ε2e[n]

)
HINT: You only need to perform the finite difference calculations for n ≤ m, and then
generate the other elements through symmetry, H = H T.

(d) Compute the angular frequencies of each vibrational mode. Note that you will have
some zero-frequency modes corresponding to net translation and rotation of the
molecule. Neglect these. Also compute the eigenvectors, and save all results in a .mat
file.

(e) Then, using animate 2D vib.m as a guide, write a MATLAB routine that makes a movie
of the vibrations associated with a selected mode. Using this visualization, list the
modes in order of increasing frequency and describe the nature of the corresponding
oscillations. These modes are the peaks that may be observed in IR or Raman spec-
troscopy, depending upon the symmetry properties of the corresponding oscillations.

4 Initial value problems

Armed with techniques for solving linear and nonlinear algebraic systems (Chapters 1
and 2) and the tools of eigenvalue analysis (Chapter 3), we are now ready to treat more
complex problems of greater relevance to chemical engineering practice. We begin with
the study of initial value problems (IVPs) of ordinary differential equations (ODEs), in
which we compute the trajectory in time of a set of N variables xj(t) governed by the set of
first-order ODEs

d

dt
x = ẋ = f (x) (4.1)

We start the simulation, usually at t0 = 0, at the initial condition, x(t0) = x[0]. Such prob-
lems arise commonly in the study of chemical kinetics or process dynamics. While we have
interpreted above the variable of integration to be time, it might be another variable such as
a spatial coordinate.

Our task will be to develop iterative rules for updating the trajectory by taking small steps
forward in time. We would like the numerical trajectory to agree with the exact solution

x(t) = x[0] +
∫ t

t0

f (x(t ′))dt ′ (4.2)

Therefore, this problem is closely related to that of numerically computing the values of
definite integrals

IF =
∫ b

a
f (x)dx (4.3)

Thus, we first consider the subject of numerical integration (quadrature). As we can compute
IF analytically when f (x) is a polynomial,

f (x) =
N∑

k=0

ck xk IF =
N∑

k=0

ck

k + 1

[
bk+1 − ak+1

]
(4.4)

our first topic will be polynomial interpolation, the representation of an arbitrary function
f (x) by an approximating polynomial.

Following a discussion of polynomial interpolation and numerical integration, a survey
is presented of the major techniques for solving IVPs, as implemented in MATLAB. Then,
the issues of numerical accuracy and stability are treated at depth for commonly-used ODE
solvers. Next, we consider differential-algebraic equation (DAE) systems that contain both

154

ODE-IVP 155

ODEs and nonlinear algebraic equations of the general form

M ẋ = f (x) x(t0) = x[0] (4.5)

M is a matrix, in general itself a function of x and t, and singular, as it contains a row of
all zeros for each algebraic equation. Finally, we present a robust method, based upon IVP
solvers, to study how the solution to a set of nonlinear algebraic equations depends upon
its parameters, parametric continuation.

Initial value problems of ordinary differential equations (ODE-IVPs)

IVPs arise when we study the dynamics of a system governed by a set of first-order ODEs,
such as the batch reactor kinetics for the network of two elementary reactions

A+ B → C rR1 = k1cAcB

C+ B → D rR2 = k2cCcB (4.6)

At t0 = 0, we start with the initial concentrations

cA(t0) = cA0 cB(t0) = cB0 cC(t0) = cD(t0) = 0 (4.7)

The time evolution of the system follows the set of first-order ODEs

dcA

dt
= −rR1

dcB

dt
= −rR1 − rR2

(4.8)
dcC

dt
= rR1 − rR2

dcD

dt
= rR2

We wish to use a general notation system for IVPs, and so define a state vector, x, that
completely describes the state of the system at any time sufficiently well to predict its future
behavior; here,

x = [
cA cB cC cD

]T
(4.9)

We then write the ODE system, substituting for the reaction rates, as

ẋ1 = −k1x1x2 = f1(x; k1, k2) ẋ2 = −k1x1x2 − k2x3x2 = f2(x; k1, k2)
(4.10)

ẋ3 = k1x1x2 − k2x3x2 = f3(x; k1, k2) ẋ4 = k2x3x2 = f4(x; k1, k2)

We collect the parameters of the system into a parameter vector

Θ = [k1 k2]T (4.11)

and write (4.10) in the standard ODE-IVP form

ẋ = f (x; Θ) x(t0) = x[0] (4.12)

We next show that this problem formulation is quite general by considering the following:

How do we express the system in the form of (4.12) if the function vector is itself time-
dependent?

What if we have ODEs of higher order than one?

156 4 Initial value problems

To resolve the first question, let us say that we have a problem with time-dependent
function values

ẋ = f (t, x; Θ) x(t0) = x[0] (4.13)

Expanding the state vector to include time,

y =

x1
...

xN

t

 g =

f1
...
fN

1

 (4.14)

we write the system in the standard form as

ẏ = g(y; Θ) y(t0) = y[0] =
[

x[0]

t0

]
(4.15)

To answer the second question let us say that we have a second-order ODE for u(t)

a2(u, t)
d2u

dt2
+ a1(u, t)

du

dt
+ a0(u, t) = 0 (4.16)

We define the state vector

x =
[

u
du

dt
t

]T

(4.17)

and write the ODE as

a2(x1, x3)
dx2

dt
+ a1(x1, x3)x2 + a0(x1, x3) = 0 (4.18)

As long as a2(x1, x3) �= 0, we can write (4.18) in the standard form

ẋ =

 ẋ1

ẋ2

ẋ3

 =

 x2

−[a1(x1, x3)x2 + a0(x1, x3)]/a2(x1, x3)
1

 (4.19)

Thus if we can solve (4.12) by calculating (4.2), we can simulate the dynamics of a wide
variety of systems.

Polynomial interpolation

Because we can evaluate the integral of a polynomial analytically, integration techniques
typically employ polynomial approximations of the integrand. The general problem of
polynomial interpolation is as follows. Let us say that we have sampled some function
f (x) at the N + 1 support points {x0, x1, x2, . . . , xN} to obtain the function values
{ f0, f1, f2, . . . , fN } , f j = f (x j). We wish to construct a polynomial of degree N

p(x) = a0 + a1x + a2x2 + · · · + aN x N (4.20)

such that p(x) agrees with f (x) at each support point,

p(x j) = a0 + a1x j + a2x2
j + · · · + aN x N

j = f (x j) j = 0, 1, 2, . . . , N (4.21)

Polynomial interpolation 157

The coefficients of the polynomial therefore must satisfy the linear system

Xa =

1 x0 x2
0 . . . x N

0

1 x1 x2
1 . . . x N

1

1 x2 x2
2 . . . x N

2

...
...

...
...

1 xN x2
N . . . x N

N

a0

a1

a2
...

aN

 =

f0

f1

f2
...
fN

 = f (4.22)

As long as no two support points are colocated, det(X) �= 0, and there is a unique polynomial
of degree N that solves the interpolation problem. However, we would like to obtain the
interpolating polynomial without having to solve a system of N linear equations by elim-
ination, requiring ∼ N 3 FLOPs. Also, X easily may have quite a high condition number
and thus round-off errors may be significant, as we multiply, add, and subtract numbers of
vastly different magnitudes during elimination.

Lagrange interpolation

From the drawbacks of solving (4.22) by elimination, it would be nice to have a direct way
to construct p(x) from the function values. In fact, it is possible to express p(x) as the linear
combination

p(x) =
N∑

j=0

f j L j (x) (4.23)

The {L j (x)} that satisfy p j (x) = f j (x) are the Lagrange polynomials

L j (x) = (x − x0) · · · (x − x j−1)(x − x j+1) · · · (x − xN)

(x j − x0) · · · (x j − x j−1)(x j − x j+1) · · · (x j − xN)
(4.24)

=
N∏

k=0
k �= j

[
x − xk

x j − xk

]

L j (xk) = δ jk . In Figure 4.1, we plot the Lagrange polynomials for support points at
{0, 0.5, 1.0}. We use these polynomials to approximate f (x) = √

x on [0, 1] by (4.23). Note
that outside of [0, 1], p(x) and f (x) diverge rapidly. This demonstrates the drastic loss in
accuracy that may occur when extrapolating outside of the range of data using polynomials.

Newton interpolation

One disadvantage of Lagrange interpolation is that if we add another support point xN+1, we
have to recompute all of the Lagrange polynomials again from scratch. Newton interpolation
avoids this difficulty, and expresses the interpolating polynomial as

PN (x) = a0 + a1(x − x0)+ a2(x − x0)(x − x1)
+ · · · + aN (x − x0)(x − x1)(x − x2) . . . (x − xN−1) (4.25)

We can evaluate PN (x) rapidly through the factorization

PN (x) = a0 + (x − x0)[a1 + (x − x1)[a2 + (x − x2)[· · · + (x − xN−1)aN]]] (4.26)

158 4 Initial value problems

2

a

1

a rane inter atin

1

 12

1

1

a reeent at sr t ints

1

−2

−
−

2

1

1

Figure 4.1 (a) Lagrange polynomials for the support points {0, 0.5, 1} (b). Lagrange interpolation
of the square root function on [0, 1].

Given the function values {f0, f1, . . . , fN} at {x0, x1, . . . , xN}, how do we obtain the
coefficients {a0, a1, . . . , aN} of the Newton interpolating polynomial?

We sequentially solve the equations

f (x0) = a0

f (x1) = a0 + (x1 − x0)a1 (4.27)
f (x2) = a0 + (x2 − x0)a1 + (x2 − x0)(x2 − x1)a2

First, a0 = f (x0). We next obtain a1 from

f (x1) = f (x0)+ (x1 − x0)a1 ⇒ a1 = f (x1)− f (x0)

(x1 − x0)
(4.28)

To get a2, we subtract f (x1) from f (x2),

f (x2)− f (x1) = [a0 + (x2 − x0)a1 + (x2 − x0)(x2 − x1)a2]− [a0 + (x1 − x0)a1]

f (x2)− f (x1) = (x2 − x1)a1 + (x2 − x0)(x2 − x1)a2 (4.29)
f (x2)− f (x1)

(x2 − x1)
= a1 + (x2 − x0)a2

Defining the first-order divided differences

f [x j , xk] = f (x j)− f (xk)

(x j − xk)
= f (xk)− f (x j)

(xk − x j)
(4.30)

Polynomial interpolation 159

Table 4.1 Values of the cube root
function in [0.4, 0.6]

x f (x) = x1/3

0.4 0.7368
0.5 0.7937
0.6 0.8434

this yields

f [x1, x2]− f [x0, x1]

(x2 − x0)
= a2 ≡ f [x0, x1, x2] (4.31)

We define divided differences of higher orders recursively

f [x0, x1, . . . , xk] = f [x1, . . . , xk]− f [x0, . . . , xk−1]

(xk − x0)
(4.32)

and find that the coefficients aj are simply divided differences of the {fk}:

a j = f [x0, x1, x2, . . . , x j] (4.33)

Comparing the polynomial PN (x) for support points {x0, x1, . . . , xN},

PN (x) = a0 + a1(x − x0)+ · · · + aN (x − x0)(x − x1) . . . (x − xN−1) (4.34)

to that, PN+1(x), obtained by adding an additional support point xN+1,

PN+1(x) = a0 + a1(x − x0)+ · · · + aN (x − x0)(x − x1) . . . (x − xN−1)
+ aN+1(x − x0)(x − x1) . . . (x − xN) (4.35)

we see that

PN+1(x) = PN (x)+ aN+1(x − x0)(x − x1) . . . (x − xN) (4.36)

Thus, all previously-computed coefficients {a0, . . . , aN} remain unchanged.
As a demonstration, we use the Newton method to interpolate f (x) = x1/3 in [0.4, 0.6]

using the support points {0.4, 0.5, 0.6} (Table 4.1). We wish to predict f (0.55) = 0.8193.
First, we compute f [x j] = f (x j),

a0 = f [x0] = 0.7368 f [x1] = 0.7937 f [x2] = 0.8434 (4.37)

Next, we obtain the first-order divided differences f [x0, x1] and f [x1, x2],

a1 = f [x0, x1] = f [x1]− f [x0]

x1 − x0
= 0.7937− 0.7368

0.5− 0.4
= 0.5689

(4.38)

f [x1, x2] = f [x2]− f [x1]

x2 − x1
= 0.8434− 0.7937

0.6− 0.5
= 0.4973

160 4 Initial value problems

From these, we get the second-order divided difference f [x0, x1, x2],

a2 = f [x0, x1, x2] = f [x1, x2]− f [x0, x1]

x2 − x0
= 0.4973− 0.5689

0.6− 0.4
= −0.3581 (4.39)

The Newton interpolating polynomial, and its value at x = 0.55, are

P2(x) = a0 + (x − x0)[a1 + (x − x1)a2]
= (0.7648)+ (0.55− 0.4)[(0.5689)+ (0.55− 0.5)(−0.3581)] = 0.8195 (4.40)

Thus, the approximation of f (0.55) = 0.8193 is quite accurate.

Hermite interpolation

We have interpolated a function based on its values at the support points; however, we may
wish to include as well information about the leading order derivatives at some or all of
the support points. In Hermite interpolation, we find the polynomial p(x) of degree N that
satisfies the following N + 1 conditions at the M + 1 points x0 < x1 < · · · < xM,

p(k)(x j) = dk p

dxk

∣∣∣∣
x j

= dk f

dxk

∣∣∣∣
x j

= f (k)
j

j = 0, 1, . . . , M
k = 0, 1, . . . , n j − 1

� j n j = N + 1
(4.41)

That is, at each support point xj, p(x) matches the values of f (x) and its derivatives up to
order nj − 1. The interpolating polynomial is

p(x) =
M∑

j=0

n j−1∑
k=0

f (k)
j L jk(x) (4.42)

where the L jk(x) are computed from auxiliary polynomials l jk(x) by

l jk(x) = (x − x j)k

k!

M∏
h=0

h �= j

(
x − xh

x j − xh

)nh

(4.43)

L j, n j−1(x) = l j,n j−1(x) j = 0, 1, . . . , M (4.44)

L jk(x) = l jk(x)−
n j−1∑

v=k+1

l (v)
jk (x j)L jv(x) k = n j − 2, n j − 3, . . . , 0 (4.45)

We demonstrate this method by approximating a function f (x) in the domain [a, b] from
the values of f (x) and f (1)(x) at either end. The auxiliary polynomials for k = 0, 1 with
x0 = a, x1 = b are

l0k(x) = (x − a)k

k!

(
x − b

a − b

)2

l1k(x) = (x − b)k

k!

(
x − a

b − a

)2

(4.46)

Polynomial interpolation 161

1

2

1

1 1 2 2

Figure 4.2 Plot of the sine function f(x) at its Hermite interpolating polynomial p(x), fitting the
function and first derivative values at each end point.

Thus, we have from (4.44)

L01(x) = l01(x) = (x − a)

(
x − b

a − b

)2

L11(x) = l01(x) = (x − b)

(
x − a

b − a

)2

(4.47)

and from (4.45), L j0(x) = l j0(x)− l (1)
j0 (x j)L j0(x), yielding

L00(x) =
(

x − b

a − b

)2

−
[

2

(a − b)

][
(x − a)

(
x − b

a − b

)2
]

(4.48)

L01(x) =
(

x − a

b − a

)2

−
[

2

(b − a)

][
(x − b)

(
x − a

b − a

)2
]

Using hermite ex.m, we approximate the sine function on [0, π] by

hermite ex(‘sin’,0,pi);

to generate Figure 4.2.

Other types of interpolation

Here, we have considered interpolation using only polynomials to match function values at
a set of support points; however, many other types of interpolation exist, e.g. with trigono-
metric functions instead of polynomials. For brevity, we do not consider these methods here,
but refer the interested reader to Press et al. (1992) and Quateroni et al. (2000). The interpo-
lation methods introduced above are sufficient to meet our immediate needs of computing
the values of definite integrals. In MATLAB, various options for polynomial interpolation
are available in interp1.

162 4 Initial value problems

Newton–Cotes integration

We can now address the problem of numerical integration (quadrature).
We want to integrate f (x) over [a, b]. Interpolating f (x) at the support points a = x0 <

x1 < · · · < xN = b, we obtain∫ b

a
f (x)dx ≈

∫ b

a

[
N∑

j=0

f j L j (x)

]
dx =

N∑
j=0

f j

∫ b

a
L j (x)dx =

N∑
j=0

w j f j (4.49)

In Newton–Cotes integration, we place the support points uniformly,

x j = a + jh j = 0, 1, . . . , N h = (b − a)/N (4.50)

to yield the weights

w j = hα j α j =
∫ N

0
L j (t)dt L j (t) =

N∏
k=0,k �= j

(
t − k

j − k

)
(4.51)

Common leading-order methods are∫ b

a
f (x)dx = b − a

2
{ f0 + f1} + O(|b − a|3) trapezoid rule (4.52)

∫ b

a
f (x)dx = b − a

6
{ f0 + 4 f1 + f2} + O(|b − a|4) Simpson’s rule (4.53)

∫ b

a
f (x)dx = b − a

8
{ f0 + 3 f1 + 3 f2 + f3} + O(|b − a|5) 3/8 rule (4.54)

To improve the accuracy of the integral estimate, we can either move to a higher interpolation
order, or more conveniently, subdivide the integration domain into a number of subdomains,
a = x0 < x1 < · · · < xN = b,∫ b

a
f (x)dx =

∫ x1

x0

f (x)dx +
∫ x2

x1

f (x)dx + · · · +
∫ xN

xN−1

f (x)dx (4.55)

and apply to each subdomain one of the low-order Newton–Cotes rules. By this approach,
we obtain the popular composite trapezoid integration rule, implemented in MATLAB as
trapz,∫ b

a
f (x)dx ≈

N∑
j=1

(x j − x j−1)

2
[f (x j)+ f (x j−1)] error ∝ 1

N 2
(4.56)

An efficient means to improve accuracy is to estimate the error in each interval separately,
and adaptively add new support points only to those intervals where rapid changes in
f (x) yield the highest errors. We can further increase the accuracy by computing several
approximate values of the definite integral with different values of h = (b − a)/N , and
extrapolating the results to the limit h → 0 . In MATLAB, adaptive refinement is applied
with Simpson’s rule in quad.

Gaussian quadrature 163

Use of trapz and quad

We demonstrate the use of these quadrature functions by computing the integral of f (x) =
e−x over [0, 1], for which

IF =
∫ 1

0
e−x dx = −e−x

∣∣∣∣
1

0

= e−x

∣∣∣∣
0

1

= 1−e−1 = 0.6321 (4.57)

Using trapz, the integral and the corresponding error are computed by

N = 50;
x = linspace(0,1,N);
f = exp(-x);
int trapz = trapz(x,f),

int trapz = 0.6321
int exact = 1 – exp(-1),

int exact = 0.6321
error trapz = int exact – int trapz,

error trapz = -2.1939e-005

The accuracy of the calculation is improved by increasing the number of support points N.
This integral can also be computed using quad. First, we write a routine that returns the
integrand function,

function f = calc integrand nexp(x);
f = exp(-x);
return;

and then compute the integral using quad,

int quad = quad(‘calc integrand nexp’,0,1),
int quad = 0.6321

error quad = int exact − int quad,
error quad = -1.3768e-009

quad expects the integrand routine to return a vector of function values for an input vector
of argument values. The accuracy can be increased by adjusting the tolerance through an
additional argument,

int quad 2 = quad(‘calc integrand nexp’,0,1,1e-14),
int quad 2 = 0.6321

error quad 2 = int exact – int quad 2,
error quad 2 = 0

Gaussian quadrature

In Newton–Cotes integration, the support points are equally spaced; however, we might ask
whether there is a more accurate choice of support points. We examine this issue for the

164 4 Initial value problems

weighted integral

Iw =
∫ b

a
w(x) f (x)dx (4.58)

[a, b] may be finite or infinite (e.g. [0, ∞], [−∞, ∞]), and w(x) is a nonnegative weight
function, w(x) ≥ 0, all of whose moments are finite,

µk =
∫ b

a
xkw(x)dx k = 0, 1, 2, . . . (4.59)

As examples of weighted integrals, consider

Cartesian
∫ b

a
f (x)dx w(x) = 1 (4.60)

radial in two dimensions
∫ R

0
f (r)2πrdr w(r) = 2πr (4.61)

radial in three dimensions
∫ R

0
f (r)4πr2dr w(r) = 4πr2 (4.62)

We now examine the optimal placement of support points for the rule

Iw =
∫ b

a
w(x) f (x)dx ≈

N∑
j=0

w j f (x j) (4.63)

Here for brevity, we discuss only the major results. The supplemental material in the accom-
panying website presents a more extensive discussion, with proofs of all theorems.

Preliminary definitions

Let us define the following sets of polynomials:

� j ≡ {p(x)|degree(p) ≤ j} = all polynomials of degree j or less
(4.64)

1� j ≡ {p(x)|p(x) = x j + a1x j−1 + · · · + a j }
That is, 1�j is the set of polynomials that have degree j exactly, and that also have a leading
coefficient of 1. Thus, 1�j ⊂ �j.

Definition A function f (x) is said to be square-integrable over [a, b] for w(x) if the
following definite integral exists and is finite:

‖ f ‖2
2 =

∫ b

a
w(x)[f (x)]2dx ≥ 0 (4.65)

Definition The scalar product of two real square-integrable functions is

〈 f |g〉 ≡
∫ b

a
w(x) f (x)g(x)dx (4.66)

Definition Two square-integrable functions are said to be orthogonal if their scalar product
is zero,

〈 f |g〉 =
∫ b

a
w(x) f (x)g(x)dx = 0 ⇒ f ⊥ g (4.67)

Gaussian quadrature 165

Orthogonal polynomials

We now identify some useful properties of orthogonal polynomials.

TheoremGQ1 For the interval [a, b] and a nonnegative weight function w(x), there exists
a set of orthogonal polynomials of leading coefficient one, p j (x) ∈ 1� j , j = 0, 1, 2, . . . ,
such that 〈p j |pk〉 = 0 for j �= k. These polynomials are defined uniquely by the recursion
formula

p j+1(x) = (x − δ j+1)p j (x)− γ 2
j+1 p j−1(x) (4.68)

where

p−1(x) = 0 p0(x) = 1
δ j+1 = 〈xp j |p j 〉/〈p j |p j 〉 j = 1, 2, . . .

γ 2
j+1 =

{
0, j = 0

〈p j |p j 〉/〈p j−1|p j−1〉, j = 1, 2, . . .
(4.69)

A proof of this theorem is provided in the supplemental material.

TheoremGQ2 The N roots {x1, x2 . . . , xN } of the orthogonal polynomial pN (x) are real,
distinct and lie in (a, b), i.e. a < x1 < x2 · · ·< xN < b. The roots of pN (x) may be computed
by the eigenvalue technique of Chapter 3.

A proof of this theorem is provided in the supplemental material.

Theorem GQ3 The N × N matrix

A =

p0(x1) p0(x2) . . . p0(xN)
p1(x1) p1(x2) . . . p1(xN)

...
...

...
pN−1(x1) pN−1(x2) . . . pN−1(xN)

 (4.70)

is nonsingular for any mutually distinct arguments {x1, x2, . . . , xN}.

A proof of this theorem is provided in the supplemental material.

Gaussian quadrature

We next find that the roots x1, x2, . . . , xN of the orthogonal polynomial pN(x) provide a set
of support points that yield highly accurate estimates of weighted integrals on [a, b].

Theorem GQ4 Let {x1, x2 . . . , xN } be the N distinct roots of pN(x) in the open interval
(a, b). Let {w1, w2, . . . , w N } be the solution of the linear system

N∑
k=1

p j (xk)wk =
{

〈p0|p0〉, if j = 0

0, if j = 1, 2, . . . , N − 1
(4.71)

whose matrix (4.70) is nonsingular by Theorem GQ3. Then w j > 0 for all j = 1, 2, . . . ,

166 4 Initial value problems

N, and for all p(x) ∈ �2N−1, ∫ b

a
w(x)p(x)dx =

N∑
j=1

w j p(x j) (4.72)

That is, if we place the support points at the zeros of the orthogonal polynomial pN (x), we
obtain the exact value of the definite integral for any polynomial integrand of degree 2N –
1 or less. This is much better than we can usually expect, since with only N support points,
we generally can represent exactly only polynomials of degree N – 1 or less.

A proof of this theorem is provided in the supplemental material.

Gaussian quadrature with w (x) = 1 and the use of quadl

To compute the integral
∫ b

a f (x)dx , with w(x) = 1, we define ξ such that

x(ξ) =
[

a + b

2

]
+

[
b − a

2

]
ξ x(−1) = a x(1) = b (4.73)

and thus ∫ b

a
f (x)dx =

[
b − a

2

] ∫ 1

−1
f [x(ξ)]dx (4.74)

We use the set of orthogonal polynomials for [a, b] = [1, 1], w(x) = 1, the Legendre poly-
nomials. We select an integration order through our choice of N, and compute the roots
of pN (x), e.g. by the eigenvalue method. Then, we solve for the weights, and evaluate the
integral. The node locations and quadrature weights can be stored for repeated use.

quadl applies Gaussian quadrature adaptively. Actually, quadl uses as a default Lobatto
quadrature, which adds two more support points at a and b to the roots of pN (x) within (a,
b). However, sometimes we want all support points to lie in the interior of the domain. Let
us say that we wish to integrate a function with a singularity at a < xs < b; i.e., f (xs) blows
up to ±∞.

Let us say that this singularity is integrable so that
∫ b

a f (x)dx exists and is finite. Then,
we compute the integral by splitting (a, b) as∫ b

a
f (x)dx =

∫ xs

a
f (x)dx +

∫ b

xs

f (x)dx (4.75)

and applying Gaussian quadrature to each integral to avoid evaluating f (xs).
We demonstrate quadl to integrate f (x) = e−x over [0, 1]. Continuing the calculations

that demonstrated trapz and quad,

int quadl = quadl(‘calc integrand nexp’,0,1),
int quadl = 0.6321

Like quad, quadl expects the integrand routine to return a vector of function values for an
input vector of argument values.

Multidimensional integrals 167

Multidimensional integrals

The techniques introduced above are extended easily to multidimensional integrals. For
example, consider the double integral

ID =
∫ b

a

∫ u(x)

l(x)
f (x, y)dydx (4.76)

Let us define the function of x alone,

F(x) =
∫ u(x)

l(x)
f (x, y)dy (4.77)

such that ID =
∫ b

a F(x)dx . Applying the methods of 1-D integration,∫ b

a
F(x)dx ≈

N∑
k=0

w 〈x〉
k F(xk) (4.78)

We approximate each F(xk) using support points ykj ∈ [l(xk), u(xk)],

F(xk) =
∫ u(xk)

l(xk)
f (xk, y)dy ≈

Mk∑
j=0

w 〈y〉
k j f (xk, yk j) (4.79)

such that

ID =
∫ b

a

∫ u(x)

l(x)
f (x, y)dydx ≈

N∑
k=0

Mk∑
j=0

[
w 〈x〉

k w 〈y〉
k j

]
f (xk, yk j) (4.80)

dblquad applies this approach to integration domains that are rectangles in two dimen-
sions. For nonrectangular domains, we must compute the integral over a rectangular region
encompassing the domain of integration, and then set the integrand to zero outside of the
integration domain,∫ b

a

∫ u(x)

l(x)
f (x, y)dydx =

∫ b

a

∫ umax

lmin

f (x, y)�(x, y)dydx

umax = maxx∈ [a, b] u(x) lmin = minx∈ [a, b] l(x)
(4.81)

�(x, y) =
{

1, if l(x) ≤ y ≤ u(x)
0, otherwise

In three dimensions, triple integrals are evaluated using triplequad. To integrate f (x, y) =
x2 + 2y2 − 2xy over the unit circle, x2 + y2 ≤ 1,

ID =
∫

x2+y2≤1

[x2 + 2y2 − 2xy]dxdy (4.82)

we write a routine that returns f (x, y) for (x, y) within the circle and a value of zero for
(x, y) outside of it. dblquad expects the function to accept a vector of x arguments and a
scalar y argument. Here, the function is

function f = calc integrand 2D(x,y);
f = zeros(size(x));

168 4 Initial value problems

for k = 1:length(f)
var1 = x(k) ˆ2 + y ˆ2;
if(var1 > 1)

f(k) = 0;
else

f(k) = x(k) ˆ2 + 2*y ˆ2 − 2*x(k)*y;
end

end
return;

The value of the integral is computed by

int 2D = dblquad(‘calc integrand 2D’,-1,1,-1,1),
int 2D = 2.3562

Monte Carlo integration

For integrations over very complex domains or in spaces of very high dimension, we use
Monte Carlo integration, a stochastic technique in which points are generated at random,
and contribute to the integral if they lie within the domain of integration. A more efficient
implementation of Monte Carlo integration, based on importance sampling, is discussed in
Chapter 7, and applications of this method to Bayesian statistical analysis are considered in
Chapter 8. Here, we present a simple Monte Carlo algorithm to compute (4.82). We define
the indicator function for the unit circle

�r≤1(x, y) =
{

1, x2 + y2 ≤ 1

0, otherwise
(4.83)

Then, for f (x, y) = x2 + 2y2 − 2xy, the integral is

ID =
∫ 1

−1

∫ 1

−1
f (x, y)�r≤1(x, y)dxdy (4.84)

Using rand, a function that returns a uniformly-distributed random number in [0, 1], we
generate a long sequence of values (x [k], y[k]) and compute the average value over this
sequence of the integrand of (4.84),

〈 f �〉s = 1

Ns

Ns∑
k=1

f
(
x [k], y[k]

)
�r≤1

(
x [k], y[k]

)
(4.85)

For large Ns, this sampled average should agree with the exact value

〈 f �〉exact = 1

Asd

∫ 1

−1

∫ 1

−1
f (x, y)�r≤1(x, y)dxdy (4.86)

where the area Asd of the sampled domain is

Asd =
∫ 1

−1

∫ 1

−1
(1)dxdy = 4 (4.87)

Linear ODE systems and dynamic stability 169

Thus, as 〈 f �〉s ≈ 〈 f �〉exact, we have the approximate value for the integral∫ 1

−1

∫ 1

−1
f (x, y)�r≤1(x, y)dxdy ≈ Asd〈 f �〉s

= Asd

Ns

Ns∑
k=1

f
(

x [k], y[k]
)
�r≤1

(
x [k], y[k]

)
(4.88)

The following code uses this method to obtain an approximate value for the integral of
(4.82) in good agreement with that obtained from dblquad.

Numlter = 5000000; % increase for greater accuracy
f sum = 0;
for iter = 1:Numlter

x = -1 + 2*rand; y = -1 + 2*rand;
r = x ˆ2 + y ˆ2;
if(r <= 1)

f sum = f sum + x ˆ2 + 2*y ˆ2 - 2*x*y;
end

end
f avg = f sum/Numlter;
area = 4;
int 2D MC = f avg*area,

int 2D MC = 2.3563

Linear ODE systems and dynamic stability

We now resume our discussion of IVPs, starting with a system of linear first-order ODEs
ẋ = Ax,

ẋ1 = a11x1 + a12x2 + · · · + a1N xN

ẋ2 = a21x1 + a22x2 + · · · + a2N xN
...

ẋN = aN1x1 + aN2x2 + · · · + aN N xN

ẋ1

ẋ2
...

ẋN

 =

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aN N

x1

x2
...

xN

(4.89)

that can be solved analytically. Hence, we use it to test the performance of numerical
integration algorithms. For a single equation, the solution is

x(t) = eat x [0] ẋ = aeat x [0] = ax (4.90)

For multiple ODEs the solution is of a similar form

x(t) = eAt x[0] (4.91)

where we define the matrix exponential function as

eA = I + A + 1

2!
AA + 1

3!
AAA + 1

4!
AAAA + · · · (4.92)

170 4 Initial value problems

We can show that (4.91) is indeed a solution, as

ẋ = d

dt

[
I + At + t2

2!
AA + t3

3!
AAA + t4

4!
AAAA + · · ·

]
x[0]

=
[

A + t AA + t2

2!
AAA + t3

3!
AAAA + · · ·

]
x[0]

= A

[
I + At + t2

2!
AA + t3

3!
AAA + · · ·

]
x[0] = AeAt x[0] = Ax(t) (4.93)

Stability of the steady state of a linear system

Obviously, ẋ = Ax has a steady state at xs = 0 where ẋ = 0, but is it a stable steady state?

Definition A steady state of a dynamic system is one in which the time derivatives of
each state variable are zero. A steady state xs is stable, if following every infinitesimal
perturbation away from xs, the system returns to xs. A steady state xs is unstable, if any
infinitesimal perturbation causes the system to move away from xs. A steady state for which
a perturbation neither grows nor decays with time is said to be neutrally stable. Stability is
a property of the particular steady state and not of the differential equation.

We now determine the stability of xs = 0 for ẋ = Ax. Let us assume that A is diago-
nalizable, so that any v ∈ �N can be written as the linear combination

v = c1w [1] + c2w [2] + · · · + cN w [N] c j ∈ C
(4.94)

Aw [j] = λ j w
[j] λ j ∈ C

To determine the stability of xs = 0, we compute the response, starting at x[0] = ε, and
examine whether x(t) returns to xs = 0 or it diverges. That is, if the system is stable, we
must have

lim
t→∞‖x(t)‖ = lim

t→∞‖eAtε‖ = 0 (4.95)

We expand eAt and ε = c1w [1] + c2w [2] + · · · + cN w [N] to write x(t) = eAtε as

x(t) =
[

I + At + t2

2!
AA + · · ·

][
N∑

j=1

c j w
[j]

]

=
N∑

j=1

c j

[
I + At + t2

2!
AA + · · ·

]
w [j]

=
N∑

j=1

c j

[
1+ tλ j + t2

2!
λ2

j + · · ·
]

w [j] =
N∑

j=1

c j e
λ j t w [j] (4.96)

In general, the eigenvalues of A are complex

λ j = a j + ib j a j = Re(λ j) b j = Im(λ j) (4.97)

Linear ODE systems and dynamic stability 171

stead state

ws

w
Aw λ w

e (λ

Aw s λsw
s

e (λs

initia
state

initia
state

initia
state

initia
state

stae anid

nstae anid

Figure 4.3 Phase plot of trajectories of 2-D system from various initial states with respect to the stable
and unstable manifolds.

so that the response of the system is

x(t) =
N∑

j=1

c j e
λ j t w [j] =

N∑
j=1

c j e
a j t [cos(b j t)+ i sin(b j t)]w

[j] (4.98)

If bj �= 0, the system oscillates during its response; however, as long as a j = Re(λ j) < 0
for all eigenvalues, limt→∞ ea j t = 0. Therefore,

If all eigenvalues λj of A have Re (λj) < 0, then for all x[0], limt→∞ ‖x(t)‖ = 0, and the
steady state is stable.

If any of the eigenvalues λj of A have Re (λj) > 0, the steady state is unstable.
When every eigenvalue λj of A satisfies Re(λj)≤ 0 but there is at least one with Re (λ j) = 0,

the system does not return always to the steady state, but it does not diverge. The steady
state is neutrally stable.

Definition The span of all eigenvectors corresponding to the eigenvalues with real parts
less than zero is the stable manifold of the system,

W (s) = span
{
w [j]

∣∣Re(λ j) < 0
}

(4.99)

The span of all eigenvectors corresponding to eigenvalues with real parts greater than zero
is the unstable manifold of the system,

W (u) = span
{
w [j]

∣∣Re(λ j) > 0
}

(4.100)

The span of all eigenvectors corresponding to eigenvalues with real parts equal to zero is
the center manifold of the system,

W (c) = span
{
w [j]|Re(λ j) = 0

}
(4.101)

The trajectory of the state vector approaches a steady state along its stable manifold and
diverges along its unstable manifold (Figure 4.3).

172 4 Initial value problems

Stability of a steady state of a nonlinear system

We now generalize the stability results to nonlinear systems, ẋ = f (x; Θ), with a steady
state xs, where f (xs; Θ) = 0 . xs is stable if limt→∞ ‖x(t)− xs‖ = 0 following any
infinitesimal perturbation ε away from xs. If we only perturb the system slightly, we can
represent each function near xs as

f j (xs + ε) ≈ f j (xs)+
N∑

k=1

∂ f j

∂xk

∣∣∣∣∣
xs

εk =
N∑

k=1

∂ f j

∂xk

∣∣∣∣∣
xs

εk (4.102)

Defining the Jacobian matrix, whose elements are functions of x and Θ,

J (x; Θ) =

(∂ f1/∂x1) (∂ f1/∂x2) . . . (∂ f1/∂xN)
(∂ f2/∂x1) (∂ f2/∂x2) . . . (∂ f2/∂xN)

...
...

...
(∂ fN /∂x1) (∂ fN /∂x2) . . . (∂ fN /∂xN)

 Jmn(x; Θ) = ∂ fm

∂xn

∣∣∣∣
(x ;Θ)

(4.103)

the function vector in the vicinity of the steady state is approximately

f j (xs + ε) ≈
N∑

k=1

Jjk(xs; Θ)εk ⇒ f (xs + ε; Θ) ≈ J (xs; Θ)ε (4.104)

As xs is fixed, d(xs + ε)/dt = ε̇, and the dynamics near xs are described by

ε̇ = J (xs; Θ)ε (4.105)

Thus, we can apply the stability analysis presented above, using

J (xs; Θ)w [k] = λkw [k] (4.106)

The steady state xs of ẋ = f (x; Θ) is stable with respect to infinitesimal perturbations if
every eigenvalue of the Jacobian matrix J(xs;Θ) has a real part less than zero; Re(λk) < 0,
for all k.

If any eigenvalue of J(xs;Θ) has a positive real part, xs is unstable with respect to
infinitesimal perturbations; Re(λk) > 0 for any k.

If all eigenvalues of J(xs; Θ) have nonnegative real parts, but there is at least one
with a zero real part, xs is neutrally stable with respect to infinitesimal perturbations;
Re(λk) ≤ 0 for all k, Re(λm) = 0 for some m.

Note that in each of the statements above, we have included the restriction “with respect
to infinitesimal perturbations.” The system may very well respond unstably to large, finite
perturbations even if all eigenvalues of the Jacobian have negative real parts.

Example. Stability of steady states for nonlinear ODE systems

Consider the system of two nonlinear ODEs

ẋ1 = −2(x1 − 1)2 − 2(x1 − 1)+ (x2 − 1) = −2x2
1 + 2x1 + x2 − 1 = f1 (4.107)

ẋ2 = −(x1 − 1)− 3(x2 − 1)2 − 4(x2 − 1) = −x1 − 3x2
2 + 2x2 + 2 = f2

Linear ODE systems and dynamic stability 173

which clearly has a steady state at (1, 1). The Jacobian matrix

J (x) =

∂ f1

∂x1

∂ f1

∂x2

∂ f2

∂x1

∂ f2

∂x2

 =

[
(−4x1 + 2) (1)

(−1) (−6x2 + 2)

]
(4.108)

evaluated at the steady state is

J (xs) =
[

(−4(1)+ 2) (1)
(−1) (−6(1)+ 2)

]
=

[−2 1
−1 −4

]
(4.109)

The eigenvalues of the Jacobian are

Jac = [-2 1; -1 -4];
eig(Jac)’,

ans = -3 -3

Both eigenvalues have negative real parts and thus the steady state (1, 1) is stable. As the
eigenvalues are real, we do not expect the response to be oscillatory. Using the routine,

function f = stable calc f(t,x);
f = zeros(2,1);
f(1) = -2*x(1) ˆ2 + 2*x(1) + x(2) -1;
f(2) = -x(1) - 3*x(2) ˆ2 + 2*x(2) + 2;
return;

the following code (ode45 is explained in further detail below) plots the system response
for a small perturbation away from the steady state,

% set initial state with small perturbation
x 0 = [1;1] + 0.1*randn(2,1);
% compute response
[t traj,x traj] = ode45(‘stable calc f’,[0 2],x 0);
% make plot
figure; subplot(2,1,1); plot(t traj,x traj(:,1));
xlabel(‘t’); ylabel(‘x 1(t)’); title(‘Response to small perturbation’);
subplot(2,1,2); plot(t traj,x traj(:,2));
xlabel(‘t’); ylabel(‘x 2(t)’);

A sample response is shown in Figure 4.4.

Let us next consider another system with a steady state at xs = (1, 1), but that has a
different function f1,

ẋ1 = (x1 − 1)2 + 3(x1 − 1)− (x2 − 1) = x2
1 + x1 − x2 − 1 = f1 (4.110)

ẋ2 = −(x1 − 1)− 3(x2 − 1)2 − 4(x2 − 1) = −x1 − 3x2
2 + 2x2 + 2 = f2

The Jacobian matrix at the steady state xs is now

J (xs) =
[

(2xs1 + 1) (−1)
(−1) (−6xs2 + 2)

]
=

[
3 −1
−1 −4

]
(4.111)

174 4 Initial value problems

12

11

1

1
t

t

1 2

1 1

2
t

1
t

2

11

1

1

Figure 4.4 Response of a nonlinear system to small perturbation for a stable steady state.

and has eigenvalues,

Jac = [3 -1; -1 -4];
eig(Jac)’,
ans = -4.1401 3.1401

Now, the steady state is unstable. With the routine,

function f = unstable calc f(t,x);
f = zeros(2,1);
f(1) = x(1) ˆ2 + x(1) - x(2) - 1;
f(2) = -x(1) - 3*x(2) ˆ2 + 2*x(2) + 2;
return;

we compute the response to a small perturbation as above, but now substitute ‘unsta-
ble calc f’ in the call to ode45. An example unstable response is shown in Figure 4.5. Here,
for this particular random perturbation, the trajectory approaches a second steady state at
x′s = [−2.1761 1.5595]T. x′s is a stable steady state as its Jacobian matrix

J (x′s) =
[

(2x ′s1 + 1) (−1)
(−1) (−6x ′s2 + 2)

]
=

[−3.3520 −1
−1 −7.3570

]
(4.112)

has all eigenvalues with negative real parts, as is evident from Gershgorin’s theorem. Non-
linear ODE systems can have multiple steady states, each with different stability properties.
For other guesses of the initial perturbation, the response blows up to infinity.

generate phase plots ex1.m plots x2(t) vs. x1(t) for random initial states, with the
trajectories shown as lines emanating from circles at the initial guesses (Figure 4.6).
The manifolds for each steady state are shown as solid lines for stable eigenvalues and

Linear ODE systems and dynamic stability 175

1

−1

1
t

1 22

er tratin r nsta e
stead state at 11

arac t secnd
sta e stead state

1
t

1 22

2
t

1
t

−2

−

1

1

1

12

1

Figure 4.5 Response of nonlinear system to small perturbation for an unstable steady state showing
the approach to another, stable steady state.

2

1

21

1

2

−1

−2

−

−
− − −2 −1

Figure 4.6 Trajectories of an unstable system in phase space, relative to the stable and unstable
manifolds of each steady state. The boundary of the domain of attraction for stable steady state is
shown as a dotted line.

dashed lines for unstable eigenvalues. Figure 4.6 also shows as a dotted line the boundary
between the points that converge to the stable steady state x′s (its domain of attraction)
and those that do not. This boundary passes through the unstable steady state at (1, 1),
explaining why some random perturbations converge to the stable steady state while others
do not.

176 4 Initial value problems

Overview of ODE-IVP solvers in MATLAB

We next provide an overview of ODE-IVP solvers. The contents of this section provide a
sufficient background to solve problems of the form

ẋ = f (x; Θ) x(t0) = x[0] (4.113)

First, we describe the basic time-marching approach of ODE-IVP solvers and contrast
explicit and implicit, single-step and multistep solvers. Then, we demonstrate the use of the
explicit single-step solver ode45 and the implicit multistep solver ode15s.

Time-marching ODE-IVP solvers

ODE solvers update x(t) in discrete time steps of size �t to compute x(tk) at times t0 < t1
< t2 < · · · . For a constant time step, tk = t0 + k(�t); but often �t varies throughout the
course of the simulation. �t is smaller for greater accuracy when x(t) changes rapidly and
is larger for increased simulation speed when x(t) changes slowly. Over each time step, the
exact update of the state vector is

x(tk +�t)− x(tk) =
∫ tk+�t

tk

ẋ(t)dt =
∫ tk+�t

tk

f (x(t); Θ)dt (4.114)

If x[k] = x(tk), the new state at tk+1 = tk +�t can be estimated by a rule that approximates
(4.114), of the form

x[k+1] − x[k] = (�t)F
[
x[k], x[k+1], f (x; Θ)

]
x[k+1] ≈ x(tk+1) (4.115)

F[x[k], x[k+1], f (x; Θ)] is a rule involving the old and new states that defines the method.
At each step, there is introduced a new local error, proportional to some power of �t, that
is the difference between the approximate update (4.115) and the exact update (4.114).

As (4.115) uses information only about the state values at the beginning, x[k], and end,
x[k+1], of the current time step, it is said to define a single-step integration method. For
example, in the Crank–Nicholson method

FCN
[
x[k], x[k+1], f (x; Θ)

] ≡ 1
2

[
f
(
x[k]; Θ

)+ f
(
x[k+1]; Θ

)]
(4.116)

and in the implicit (backward) Euler method

FBE
[
x[k], x[k+1], f (x; Θ)

] ≡ f
(
x[k+1]; Θ

)
(4.117)

Because f (x; Θ) generally is nonlinear, (4.115) often cannot be rearranged to provide a
direct expression for x[k+1]. Then, (4.115) is said to generate an implicit integration method
that requires a nonlinear algebraic system to be solved at each time step.

Explicit single-step methods

By contrast, an explicit single-step integration method

x[k+1] − x[k] = (�t)F
[
x[k], f (x; Θ)

]
(4.118)

Overview of ODE-IVP solvers in MATLAB 177

yields the new state x[k+1] directly without solving an algebraic system. For example, in the
explicit (forward) Euler method

FFE
[
x[k], f (x; Θ)

] ≡ f
(
x[k]; Θ

)
x[k+1] = x[k] + (�t) f

(
x[k]; Θ

)
(4.119)

The explicit Euler method is not very accurate and is not often used. A more popular
single-step explicit rule is the fourth-order Runge–Kutta (RK4) method

k(1) = (�t) f
(
x[k]

)
k(2) = (�t) f

(
x[k] + k(1)/2

)
k(3) = (�t) f

(
x[k] + k(2)/2

)
k(4) = (�t) f

(
x[k] + k(3)

)
(4.120)

x[k+1] − x[k] = 1
6

[
k(1) + 2k(2) + 2k(3) + k(4)

]
local error ∼ O(�t5) global error ∼ O(�t4)

The RK4 method is said to be fourth-order as the global error, the net difference between
the numerical and true solutions over the course of a simulation, is proportional to the fourth
power of the time step �t. For a method of order p, after some period of simulation time
tN = t0 + N (�t),

x(tN)− x(t0) =
∫ tN

t0

ẋ(t)dt = x[N] − x[0] + O[(N�t)p] (4.121)

We do not derive (4.120) here, but rather the simpler RK2 method, yet the path to higher-
order RK methods becomes clear. We want to update ẋ = f (x) from tk to tk+1 = tk +�t
by approximating (4.114). With the explicit Euler method, we neglect the time variation of
f (x(t)) to obtain the rule

x[k+1] − x[k] = (�t) f
(
x[k]

) ≡ k(1) (4.122)

But, once we have computed k(1), we can use it to approximate the integrand of (4.114)
more accurately. We take the mid-point of the full explicit Euler step, x[k] + k(1)/2, and
evaluate the function at this point

k(2) = (�t) f
(
x[k] + k(1)/2

) ≈ (�t) f (x(tk +�t/2)) (4.123)

We now form a linear approximation to f (x(t)) over the time step,

f (x(t)) = f (x(tk))

[
(�t/2)− (t − tk)

(�t)/2

]
+ f (x(tk +�t/2))

[
(t − tk)

(�t)/2

]
+ O(�t2)

(4.124)
which we write in terms of k(1) and k(2),

f (x(t)) = k(1)

[
(�t/2)− (t − tk)

(�t)2/2

]
+ k(2)

[
(t − tk)

(�t)2/2

]
+ O(�t2) (4.125)

We substitute this approximation into (4.114),

x[k+1] − x[k] =
∫ tk+�t

tk

{
k(1)

[
(�t/2)− (t − tk)

(�t)2/2

]
+ k(2)

[
(t − tk)

(�t)2/2

]
+ O(�t2)

}
dt

(4.126)

178 4 Initial value problems

Integrating, we obtain the second-order Runge–Kutta (RK2) method

x[k+1] − x[k] = k(2) + O(�t3)
k(1) = (�t) f

(
x[k]

)
k(2) = (�t) f

(
x[k] + k(1)/2

)
(4.127)

local error ∼ O(�t3) global error ∼ O(�t2)

Higher-order Runge–Kutta methods are generated by using k(1) and k(2) to construct even
more accurate approximations for f (x(t)).

In MATLAB, ode45 implements the Runge–Kutta–Fehlberg 4-5 (RKF45) method, based
upon a fifth-order Runge–Kutta rule, from which a fourth-order update formula is extracted
using the same function evaluations. If the two methods agree closely, the time step can
be increased safely, but if they disagree, the time step is too large and should be reduced.
Thus, the user can specify a desired level of accuracy, and let ode45 adjust the step size as
needed. Use of ode45 is demonstrated below.

Implicit multistep methods

In a multistep integration method, the update rule also depends upon the values of x at times
in the immediate past, up to a horizon length mh. Implicit multi-step integration methods
are of the general form

α−1x[k+1] + α0x[k] = (�t)β−1 f
(
x[k+1]; Θ

)+U [k] (4.128)

α−1, α0, and β−1 are dimensionless scalars and we have some rule for U [k] involving the
current and old values of the state vector,

U [k] = F
[
�t, f (x; Θ); tk, x[k], tk−1, x[k−1] , tk−2, x[k−2], . . . , tk−mh , x[k−mh]

]
(4.129)

For example, we can use polynomial interpolation of the past state and function data to
approximate the exact update (4.114),

x(tk +�t)− x[k] =
∫ tk+�t

tk

f (x(t))dt =
∫ 1

0

(
dx

dτ

)
dτ τ ≡ t − tk

�t
(4.130)

We have available at times {tk, tk−1, . . . , tk−mh} in the recent past the values of the state vector
{x[k], x[k−1], . . . , x[k−mh]} and the time derivative function { f [k], f [k−1], . . . , f [k−mh]}. We
define the scaled time quantities

τ j = tk− j − tk
�t

ẋ(τ j) = dx

dτ

∣∣∣∣
x[k− j]

=
(

dt

dτ

)
dx

dt

∣∣∣∣
x[k− j]

= (�t) f
(
x[k− j]

)
(4.131)

We shall assume that the time step is constant in the recent past. If not, we can interpolate
the values for nonuniform �t to estimate the values of x and f at times in the past that are

Overview of ODE-IVP solvers in MATLAB 179

uniformly spaced. Thus, we have available for interpolation of x(τ) the data

past past past current future
τmh = −mh τ2 = −2 τ1 = −1 τ0 = 0 τ−1 = 1

x(τmh) . . . x(τ2) x(τ1) x(τ0) x(τ−1)
dx

dτ

∣∣∣∣
τmh

dx

dτ

∣∣∣∣
τ2

dx

dτ

∣∣∣∣
τ1

dx

dτ

∣∣∣∣
τ0

dx

dτ

∣∣∣∣
τ−1

(4.132)

For uniform �t, x(τ j) = x[k− j] and with (4.131), we use the data of (4.132) to approximate
x(τ) by Hermite interpolation,

x(τ) ≈ π(τ) =
mh∑

j=−1

[
x[k− j]L j0(τ)+ (�t) f [k− j]L j1(τ)

]
(4.133)

Above, we use both past state and function data, but a backward difference formula (BDF)
method uses only the states at the present and past times,

x(τ) ≈ π(τ) = x[k+1]L−1,0(τ)+ (�t) f [k+1]L−1,1(τ)+
mh∑
j=0

x[k− j]L j0(τ) (4.134)

Upon differentiation of (4.133), we have

dx

dτ
≈ dπ

dτ
=

mh∑
j=−1

[
x[k− j] d L j0

dτ
+ (�t) f [k− j] d L j1

dτ

]
(4.135)

Substituting (4.135) into (4.130) yields the update rule

x[k+1] − x[k] =
∫ 1

0

(
dπ

dt

)
dτ =

∫ 1

0

{
mh∑

j=−1

[
x[k− j] d L j0

dτ
+ (�t) f [k− j] d L j1

dτ

]}
dτ

(4.136)
which can be written as

α−1x[k+1] +
mh∑
j=0

α j x
[k− j] = (�t)β−1 f [k+1] + (�t)

mh∑
j=0

β j f [k− j] (4.137)

where the coefficients are

α−1 = 1 −
∫ 1

0

d L−1,0

dτ
dτ α0 = −1−

∫ 1

0

d L00

dτ
dτ α j∈ [1,mh] = −

∫ 1

0

d L j0

dτ
dτ

β j =
∫ 1

0

d L j1

dτ
dτ j = −1, 0, 1, . . . , mh

(4.138)

Equation (4.137) is of the form of (4.128) with

U [k] = (�t)
mh∑
j=0

β j f [k− j] −
mh∑
j=1

α j x
[k− j] (4.139)

We now discuss the numerical solution of (4.128). We first generate an initial guess of
the new state vector, x[k+1,0] from an explicit rule such as (4.118). Then, we use Newton’s
method to generate a sequence of refined estimates x[k+1,1], x[k+1,2], . . . that should converge
to the solution of (4.128) if �t is small enough. Such an approach, using an explicit rule to

180 4 Initial value problems

make an initial guess of x[k+1] followed by iterative solution of an implicit rule, is known
as a predictor/corrector method.

Let x[k+1,q] be our current estimate of x[k+1] at the qth Newton iteration, with the function
and Jacobian values f [k+1,q] and J[k+1,q]. We approximate f (x; Θ) in the vicinity of x[k+1,q]

as

f (x; Θ) ≈ f [k+1,q] + J [k+1,q]
(
x − x[k+1,q]

)
(4.140)

Substituting (4.140) into (4.128) for f (x[k+1]; Θ), we have

α−1x[k+1] + α0x[k] ≈ (�t)β−1
{

f [k+1,q] + J [k+1,q]
(
x[k+1] − x[k+1,q]

)}+U [k] (4.141)

This yields the following linear algebraic system for x[k+1, q+1] ≈ x[k+1],

A[k+1,q]x[k+1,q+1] = b[k+1,q]

A[k+1,q] = α−1 I − (�t)β−1 J [k+1,q] (4.142)

b[k+1,q] = −α0x[k] + (�t)β−1
{

f [k+1,q] − J [k+1,q]x[k+1,q]
}+U [k]

These Newton iterations are repeated until (4.128) is satisfied, yielding x[k+1]. The entire
process then is repeated for the next time step.

Clearly, an implicit method requires significantly more work per time step than an explicit
method; however, some tricks are available to reduce the computational burden. When �t
is small, the changes in x from one iteration to the next are slight, as the difference between
x[k] and x[k+1] is proportional to �t. Thus, A = α−1 I − (�t)β−1 J varies little and may be
held constant, at least temporarily. LU factorization allows us to solve a large fraction of
the systems of (4.142) without the need for elimination each time.

Stiffness and the choice of integration method

We might wonder why we bother to discuss implicit methods at all, if explicit methods allow
much easier and faster updates at each time step. The reason is that for many problems,
explicit methods may require, for reasons of numerical stability, the use of very small time
steps. Then, for a given overall simulation time, the number of updates performed with
an explicit method may be so much greater than with an implicit method that the implicit
method becomes favored.

Implicit methods are favored for IVPs that are stiff, in which the condition number of the
Jacobian matrix (the ratio of the largest and smallest eigenvalue moduli) is very large. Stiff
systems are by no means rare and so we must be prepared to use both explicit and implicit
methods. As a general rule, if we have no reason to expect that a problem is stiff, we first try
an explicit method. If it fails, i.e., it keeps running with no end in sight, we try an implicit
method. A more detailed treatment of stiffness and a comparison of the numerical stability
properties of explicit and implicit methods are provided following the demonstration of the
MATLAB ODE solvers.

Overview of ODE-IVP solvers in MATLAB 181

ODE solvers in MATLAB

A list of ODE solvers (and of other routines that act on functions) is returned by help
funfun, and a documentation window is opened by doc funfun. The two main rou-
tines of interest are ode45, an explicit single-step integrator, and ode15s, an implicit
multistep integrator that works well for stiff systems. We demonstrate the use of
ode45 and ode15s for a simple batch reactor with the two elementary reactions
A + B → C and C + B → D

dcA

dt
= −rR1

dcB

dt
= −rR1 − rR2

dcC

dt
= rR1 − rR2

dcD

dt
= rR2

rR1 = k1cAcB rR2 = k2cCcB (4.143)
cA(0) = cA0 cB(0) = cB0 cC(0) = 0 cD(0) = 0

To use ode45 and ode15s, we must provide at least a routine that returns for input values
of t and x, the value of ẋ = f (t, x),

function f = calc f(t, x, P1, P2, . . .);

P1, P2, . . . are optional fixed parameters. For (4.143), the routine is

function f = batch reactor ex calc f(t, x, k1, k2);
f = zeros(size(x));
% extract concentrations from state vector
cA = x(1); cB = x(2); cC = x(3); cD = x(4);
% compute rates of each reaction
r1 = k1*cA*cB; r2 = k2*cC*cB;
f(1) = -r1; % mole balance on A
f(2) = -r1 -r2; % mole balance on B
f(3) = r1 - r2; % mole balance on C
f(4) = r2; % mole balance on D
return;

For k1 = 1, k2 = 0.5, cA0 = 1, cB0 = 2, (4.143) is simulated until an end time tend = 10
by calling ode45 with the code

% set initial state
cA 0 = 1; cB 0 = 2; x 0 = [cA 0; cB 0; 0; 0];
k 1 = 1; k 2 = 0.5; % set fixed parameters
t end = 10; % set end time
% call ode45 to perform simulation
[t traj,x traj] = ode45(@batch reactor ex calc f, . . .

[0 t end], x 0, [], k 1, k 2);
% plot results
figure; plot(t traj,x traj(:,1));
hold on; plot(t traj,x traj(:,2),‘--’);
plot(t traj,x traj(:,3),‘-.’); plot(t traj,x traj(:,4),‘:’);
xlabel(‘time t’); ylabel(‘concentration c j(t)’);

182 4 Initial value problems

2

1

1

1

12

1

2

2

tie t

cn
ce

nt
r

at
in

c

t

A
B

1

Figure 4.7 Dynamic concentrations of species in a batch chemical reactor (A + B → C,

C + B → D).

title(‘Batch reactor, A + B ==> C, C + B ==> D’);
legend(‘A’,‘B’,‘C’,‘D’,‘Location’,‘Best’);

The plot is shown in Figure 4.7. The general syntax for ode45 is

[t traj, x traj] = ode45(fun name, t span, x 0, OPTIONS, P1, P2, . . .);

fun name is the name of the routine that returns the time derivative vector. t span is the set
of times at which the state values are desired. If only a start and an end time are given (as
above), ode45 returns state values at several times within the time span. x 0 is the initial
state. OPTIONS is a structure, set by odeset, that allows the user to override the default
behavior of ode45. To accept the default arguments, use the empty set [] at this position.
P1, P2, . . . are fixed parameters that are passed as arguments to fun name. t traj is a vector
of times at which the state vector is returned, and the corresponding values of xk(t) are
located in the kth column of x traj.

The use of ode15s is analogous to that of ode45; however, if only the function val-
ues are returned by the user-supplied routine, ode15s has to evaluate the Jacobian matrix
itself, which is costly for large systems. Therefore, for large ODE systems, it is help-
ful to supply a second routine that returns the Jacobian matrix for input t and x. While
for (4.143) the effort is not necessary, we use it to demonstrate the procedure. The
Jacobian is

J =

(−k1cB) (−k1cA) 0 0
(−k1cB) (−k1cA − k2cC) (−k2cB) 0
(k1cB) (k1cA − k2cC) (−k2cB) 0

0 (k2cC) (k2cB) 0

 (4.144)

Overview of ODE-IVP solvers in MATLAB 183

We supply a routine that computes the Jacobian,

function Jac = batch reactor ex calc Jac(t, x, k1, k2);
% allocate memory for the Jacobian matrix
N = length(x); Jac = zeros(N,N);
% extract state variables
cA = x(1); cB = x(2); cC = x(3); cD = x(4);
% set non zero values of the Jacobian
% row 1 – mole balance on A
Jac(1,1) = -k1*cB; Jac(1,2) = -k1*cA;
% row 2 – mole balance on B
Jac(2,1) = -k1*cB; Jac(2,2) = -k1*cA-k2*cC; Jac(2,3) = -k2*cB;
% row 3 – mole balance on C
Jac(3,1) = k1*cB; Jac(3,2) = k1*cA-k2*cC; Jac(3,3) = -k2*cB;
% row 4 - mole balance on D
Jac(4,2) = k2*cC; Jac(4,3) = k2*cB;
return;

and inform ode15s that this routine has been provided through odeset,

OPTIONS = odeset(‘Jacobian’, ‘batch reactor ex calc Jac’);
[t traj, x traj] = ode15s(@batch reactor ex calc f, . . .

[0 t end], x 0, OPTIONS, k 1, k 2);

Other flags in OPTIONS allow us to modify the tolerances or to provide an Events function
that identifies when specified functions approach zero, and optionally stop the simulation
whenever this happens. Type help odeset for more information.

Example. Stiffness and the QSSA in chemical kinetics

We contrast the behavior of the explicit ode45 and implicit ode15s ODE solvers for a
simple chemical system that exhibits stiffness for certain parameter values. Consider a
reaction mechanism for A → B in which A first collides with an energetic third body M
to form an activated species A*. This activated species then decomposes to the product B.
The mechanism

A + M → A∗ +M rR1 = k1cMcA
(4.145)

A∗ → B rR2 = k2cA∗

yields the batch kinetics

dcA

dt
= f1 = −k1cMcA cA0 = 1

dcA∗

dt
= f2 = k1cMcA − k2cA∗ cA∗0 = 0 (4.146)

dcB

dt
= f3 = k2cA∗ cB0 = 0

184 4 Initial value problems

Table 4.2 Comparison of ode45 and ode15s for kinetics system
with an activated mechanism that becomes stiff with increasing
k2. Here, the condition number equals k2

k2 CPU time with ode45 (s) CPU time with ode15s (s)

1 0.0200 0.0401
10 0.0200 0.0901

100 0.2103 0.0801
1000 1.8226 0.0701

10 000 24.8648 0.0701

As d[cA + cA∗ + cB]/dt = 0, cB = cA0 − cA − cA∗ and thus we only need to simulate the
first two equations. The Jacobian of the system for {cA(t), cA∗ (t)} is

J =

∂ f1

∂cA

∂ f1

∂cA∗

∂ f2

∂cA

∂ f2

∂cA∗

 =

[−k1cM 0
k1cM −k2

]
(4.147)

The eigenvalues of J are −k1cM and −k2. When the activated species is very reactive,
k2 � k1cM and the system is stiff. Let us examine what happens to the performances of
ode45 and ode15s. QSSA ex.m uses cputime to compare the CPU times required to solve
the ODE-IVP with the two solvers when k1cM = 1 and k2 is increased from a value of 1
(Table 4.2). As the system becomes stiff, ode45 requires more CPU time to simulate the
response, due to a need to use very small time steps to preserve numerical stability. ode15s
performs much better when the system is stiff, showing little change in performance. The
concentrations of A, A*, and B are plotted for the nonstiff case k2 = 1 in Figure 4.8. As
expected, cA* initially grows as it is produced by the first reaction, and then decreases later
as it is consumed by the second reaction.

For the stiff case k2 = 100, the dynamic concentration profiles are very different (Figure
4.9). Except for a very short initial period where cA* increases rapidly from cA∗0 = 0, it
appears that cA* remains proportional to cA. Such an observation leads to the quasi-steady
state approximation (QSSA), which states that the concentration of a very active species
such as A* is in dynamic equilibrium between generation and destruction; i.e.,

dcA∗

dt
= k1cMcA − k2cA∗ ≈ 0 ⇒ cA∗ ≈

(
k1cM

k2

)
cA (4.148)

With the QSSA, the system reduces to a single ODE,

dcA

dt
= −k1cMcA cA0 = 1 cA∗ =

(
k1cM

k2

)
cA cB = cA0 − cA − cA∗ (4.149)

that is solved by ode45 with little difficulty. For k2 = 104, ode45 requires 25 CPU seconds
to solve the full ODE system (4.146) but only 0.03 CPU seconds to solve the single QSSA
ODE (4.149). Inspection of Figure 4.9 and Figure 4.10 shows the QSSA to be quite accurate
for k2/(k1cM) = 100.

Accuracy and stability of single-step methods 185

1

2

1

2

tie t

1

A

B
A

1c 1 2 1

cn
ce

nt
ra

tin
c

t

Figure 4.8 Dynamic concentration profiles for an activated reaction mechanism in the nonstiff
case, k2 = 1 (A + M → A∗ + M, A∗ → B).

A
A
B

1

1 1

1 2

1

1

1

1

1

cn
ce

nt
r

at
in

c

t

2 1

tie t

1c 1 2 1

Figure 4.9 Dynamic concentration profiles for the activated reaction mechanism in the stiff case, k2 =
100 (A + M → A∗ + M, A∗ → B).

Accuracy and stability of single-step methods

Above we have demonstrated the use of MATLAB solvers, with little discussion of their
performance. Here, we address these issues for the restricted class of single-step integrators

x[k+1] = x[k] + (�t)
[
(1− θ) f

(
x[k]

)+ θ f
(
x[k+1]

)]
(4.150)

186 4 Initial value problems

Figure 4.10 Dynamic concentration profiles for the activated reaction mechanism with k2 = 100,
obtained using the QSSA (A + M → A∗ + M, A∗ → B).

This includes as special cases the explicit (forward) Euler method for θ = 0, the implicit
(backward) Euler method for θ = 1, and the Crank–Nicholson method for θ = 1/2.

Numerical accuracy and the order of an integration method

We begin first with a discussion of accuracy. Let us form Taylor series expansions around
x(tk) and x(tk+1) in the forward and reverse time directions respectively, with tk+1 = tk +
�t ,

x(tk+1) = x(tk)+ (�t) f
(
x[k]

)+ (�t)2

2
ẍ(tk)+ (�t)3

6
ẍ̇(tk)+ · · · (4.151)

x(tk) = x(tk+1)− (�t) f
(
x[k+1]

)+ (�t)2

2
ẍ(tk+1)− (�t)3

6
ẍ̇(tk+1)+ · · · (4.152)

Multiplying (4.151) by (1 − θ), (4.152) by (−θ), and adding the resulting two equations,
we obtain

x(tk+1)− x(tk) = (�t)
[
(1− θ) f

(
x[k]

)+ θ f
(
x[k+1]

)]+ L E (4.153)

where the local error introduced by truncating the two expansions is

L E = (�t)2

2
[(1− θ)ẍ(tk)− θ ẍ(tk+1)]+ (�t)3

6
[(1− θ)ẍ̇(tk)+ θ ẍ̇(tk+1)]+ · · ·

(4.154)
As the leading term in the local error is proportional to (�t)2, we write

x(tk+1) = x(tk)+ (�t)
[
θ f

(
x[k]

)+ (1− θ) f
(
x[k+1]

)]+ O[(�t)2] (4.155)

By this analysis, we see that at every time step, there is a new local error, proportional
to (�t)2, introduced into our numerical state trajectory {x[1], x[2], . . .}. Over the course of

Accuracy and stability of single-step methods 187

a simulation of duration tsim, the number of time steps taken is tsim/(�t). If at each of
these steps, we introduce an additional local error proportional to (�t)2, then the global
error, the net difference between the numerical trajectory and the true trajectory x(t), is
proportional to [tsim/(�t)](�t)2 = tsim(�t). As the global error is proportional to the first
power of �t, (4.150) is said to be a first-order accurate integration method. We usually wish
to use integration methods of high orders of accuracy, as then a reduction in �t yields a
dramatic decrease in the global error. Note that the most accurate choice of θ is θ = 1/2,
the Crank–Nicholson method, for which the (�t)2 terms nearly cancel out.

Absolute stability of an integration method

Accuracy is not the only consideration when choosing an integration method. Usually, a
property of more practical importance is numerical stability. We examine here questions of
stability for the linear test equation

ẋ = Ax (4.156)

where we assume that the matrix A is diagonalizable. We wish to perturb the system by a
small amount ε away from its steady state xs = 0 and then compare the resulting numerical
response with a time step �t to the true response x(t) = eAtε. As A is assumed to be
diagonalizable, we can write

ε = x[0] = c[0]
1 w [1] + c[0]

2 w [2] + · · · + c[0]
N w [N] c[0]

j ∈ C
(4.157)

Aw [j] = λ j w
[j] λ j = a j + ib j

The true response of the system to this perturbation is

x(t) = eAtε =
N∑

j=1

c[0]
j eλ j t w [j] (4.158)

If xs = 0 is stable, Re(λ j) < 0 for all j, and the true response x(t) returns to xs = 0 for all
perturbations. Thus, if we find that the numerical response does not behave similarly, we
obviously have a problem.

Definition Absolute stability. Let us generate a sequence of values x[k] that are meant to
approximate the response of the system ẋ = Ax at times tk = k(�t) for k = 0, 1, 2,
We expand each member of the sequence as a linear combination of the eigenvectors of
A, x[k] = �N

j=1c[k]
j w [j]. We say that the rule generating this sequence is absolutely stable if,

for every eigenvalue of A with Re(λ j) < 0, |c[k+1]
j | ≤ |c[k]

j |. That is, the numerical response
of the system does not grow along the stable manifold of A.

From (4.150), the numerical response for ẋ = Ax is generated by the rule

x[k+1] = x[k] + (�t)
[
(1− θ)Ax[k] + θ Ax[k+1]

]
(4.159)

We expand the old and new states in eigenvectors of A,

x[k] =
N∑

j=1

c[k]
j w [j] x[k+1] =

N∑
j=1

c[k+1]
j w [j] (4.160)

188 4 Initial value problems

and substitute these expansions into (4.159),

N∑
j=1

c[k+1]
j w [j] =

N∑
j=1

c[k]
j w [j] + (�t)

[
(1− θ)A

N∑
j=1

c[k]
j w [j] + θ A

N∑
j=1

c[k+1]
j w [j]

]

(4.161)
Using Aw [j] = λ j w [j], collecting terms yields

0 =
N∑

j=1

{− c[k+1]
j + c[k]

j + c[k]
j (�t)(1− θ)λ j + c[k+1]

j (�t)θλ j

}
w [j] (4.162)

Setting to zero each component of (4.162) yields

c[k+1]
j

c[k]
j

= 1+ (�t)λ j (1− θ)

1− (�t)λ jθ
(4.163)

For simplicity, let us assume that each λj of interest for the determination of absolute stability
is real. Then, λj < 0 and absolute stability requires∣∣∣∣∣c[k+1]

j

c[k]
j

∣∣∣∣∣ =
∣∣∣∣1− ω j (1− θ)

1+ θω j

∣∣∣∣ ≤ 1 ω j = −(�t)λ j > 0 (4.164)

Let us consider the three cases of interest:

explicit Euler

∣∣∣∣∣c[k+1]
j

c[k]
j

∣∣∣∣∣
θ=0

=
∣∣∣∣1− ω j

1

∣∣∣∣ ≤ 1 only when ω j ≤ 2 (4.165)

implicit Euler

∣∣∣∣∣c[k+1]
j

c[k]
j

∣∣∣∣∣
θ=1

=
∣∣∣∣ 1

1+ ω j

∣∣∣∣ ≤ 1 ∀ω j > 0 (4.166)

Crank–Nicholson

∣∣∣∣∣c[k+1]
j

c[k]
j

∣∣∣∣∣
θ=1/2

=
∣∣∣∣∣1− 1

2ω j

1+ 1
2ω j

∣∣∣∣∣ ≤ 1 ∀ω j > 0 (4.167)

For both the implicit Euler and the Crank–Nicholson method, we find that for any ωj > 0,
(4.164) is satisfied and the methods are absolutely stable.

Definition A method is A-stable if it is absolutely stable for all positive time steps.

Thus, the implicit Euler and Crank–Nicholson methods, or more generally (4.150) when-
ever θ ≥ 1/2, are A-stable. Here, we have only shown this to be true when all stable eigen-
values are real. For four values of θ , Figure 4.11 plots the modulus of the growth coefficient
µ j = c[k+1]

j /c[k]
j as a function of ωj in the complex plane. The region of absolute stability,

|µj| ≤ 1, lies within the contour
∣∣µ j

∣∣ = 1. When the rules are biased more towards the
future state than the old state, θ ≥ 1/2, the method is A-stable.

By contrast, the explicit Euler method loses absolute stability whenever ωj > 2 for
any stable eigenvalue. To see what happens in this case, Figure 4.12 plots the numerical
trajectories for ẋ = −x, x(0) = 1, for which the true solution is x(t) = e−t . The explicit

Accuracy and stability of single-step methods 189

θ

θ θ 1

θ

staiit
ndar

staiit
ndar

2

2

1

1 2
e ω

1 2
e ω

ω

1 2
e ω

ω

1 2
e ω

ωω 2

2

2

2

Figure 4.11 Magnitude of the growth coefficient vs. real and imaginary parts of the dimensionless
time step. The region of absolute stability lies within the contour of 1.

2

1

1 2

1

t

2

1

1

t t

t

2
t

1
t

1 2
t

iicit er ∆t 2 iicit er ∆t 2

eicit er ∆t 2 eicit er ∆t 2

2

1

1

2

t

1

Figure 4.12 Numerical trajectories for dx/dt = −x, x(0) = 1 for explicit Euler and implicit Euler
at various time steps less than 2 and greater than 2. Upper right shows loss of absolute stability for
the explicit method. Time steps below 2 are {0.1, 0.5, 1.0, 1.5, 1.9}. Time steps above 2 are {2.1, 2.5,
2.75, 3}.

190 4 Initial value problems

Euler method becomes unstable for �t > 2 resulting in spurious oscillations and divergence.
By contrast, the A-stable implicit Euler method remains well-behaved, though not accurate,
even for large time steps.

Time step restrictions for stiff systems

We can now see why explicit methods have difficulty with stiff systems. For ẋ =
Ax, Aw [j] = λ j w [j], (4.159) yields the numerical response

x[k] =
N∑

j=1

c[0]
j µk

j w
[j] µ j = 1− ω j (1− θ)

1+ θω j
ω j = −(�t)λ j (4.168)

For absolute stability, we must have |µ j | ≤ 1 for every stable eigenvalue with Re(ωj) > 0;
however, when θ < 1/2, we have an upper limit on the allowable time step (Figure 4.11). If
λmax is the largest eigenvalue magnitude, for absolute stability we must have

ωmax = (�t)λmax ≤ ωc ωc = 2 for explicit Euler (4.169)

Thus, the time step must be smaller than (�t)c = ωc/λmax. But, inspection of (4.158) shows
that the time required for x(t) to relax back to the steady state xs = 0 is governed by the
smallest eigenvalue λmin, as c j (t) = c[0]

j eλ j t . Thus, we shall have to continue the simulation

until tend ≈ λ−1
min. To maintain absolute stability, the number of time steps has to be greater

than

Nmin ≈ tend

(�t)c
= λ−1

min

ωc/λmax
= (λmax/λmin)

ωc
= κ(A)

ωc
(4.170)

κ(A) is the condition number of A. Therefore, for stiff systems with high condition numbers,
explicit methods are forced to take a very large number of time steps, requiring many
function evaluations and much CPU time. The restriction (4.169) is not present for A-stable
integrators.

Error rejection

There is another benefit that accrues from absolute stability. Let us start a simulation at
an initial state slightly perturbed from the previous one at x[0] = �N

j=1(c[0]
j + δc[0]

j)w [j], to
generate the numerical trajectory

x[k] =
N∑

j=1

(
c[0]

j + δc[0]
j

)
µk

j w
[j] (4.171)

As in (4.168), µj is the growth coefficient. The difference between the original trajectory
(4.168) and the perturbed trajectory (4.171) is

δx[k] =
N∑

j=1

(
δc[0]

j

)
µk

j w
[j] (4.172)

When all |µ j | < 1, the effect of this perturbation decays to zero. This property, error
rejection, is important and desirable in numerical simulation, as then the round-off errors

Accuracy and stability of single-step methods 191

that are continually introduced do not accumulate but remain manageable, as their effects
become less and less important at later times. By contrast, if any |µ j | > 1, round-off errors
grow exponentially and may drown out the true response with random noise.

Stiff systems from discretized PDEs

These issues of stability and error rejection become very important for stiff systems, as
the time step must be chosen to accommodate the largest eigenvalue (fastest mode). We
have seen above an example of a stiff system from chemical kinetics, but another important
source of stiff systems is the simulation of time-dependent PDEs such as the diffusion
equation

∂ϕ

∂t
= ∂2ϕ

∂x2
(4.173)

The finite difference method yields the linear ODE system, ϕ j ≡ ϕ(x j),

dϕ j

dt
= ϕ j−1 − 2ϕ j + ϕ j+1

(�x)2
ϕ̇ = − 1

(�x)2
Aϕ

A =

2 −1
−1 2 −1

−1 2 . . .

. −1
−1 2

 (4.174)

The eigenvalues and eigenvectors Aw [k] = λkw [k] of this diffusion matrix are

λk = 4 sin2

[
kπ

2(N + 1)

]
w [k]

j = sin

[
kπ j

N + 1

]
k = 1, 2, . . . , N (4.175)

The largest (fastest mode) eigenvalue occurs for k = N ,

λN = 4 sin2

[
Nπ

2(N + 1)

]
≈ 4 w [N]

j = sin

[
Nπ j

N + 1

]
≈ sin(π j) (4.176)

The wavelength of this eigenvector is the spacing of the grid; i.e., it describes variations on
the smallest length scale that can be resolved by the grid (Figure 3.5). The smallest (slowest)
eigenvalue occurs for k = 1,

λ1 = 4 sin2

[
π

2(N + 1)

]
≈ 4

[
π

2(N + 1)

]2

= π

N 2
w [1]

j = sin

[
π j

N + 1

]
(4.177)

The slowest mode eigenvector describes variations across the entire domain on the largest
length scale that can be resolved by the grid.

The condition number in the limit of large N is

κ = λN

λ1
≈ 4N 2

π
(4.178)

Unless the number of grid points is very small, the set of first order ODEs obtained from
discretizing a partial differential equation is very stiff.

192 4 Initial value problems

Stiff stability of BDF methods

Above, we have studied in detail the stability properties of simple single-step methods of
the class (4.150). More generally, explicit methods always have time restrictions of the form
(4.169), and the more a method makes use of past data to predict the future, the more strict
the time step restrictions become. We consider here the stability properties of implicit multi-
step BDF methods

α−1x[k+1] +
mh∑

n=0

αn x[k−n] = (�t)β−1 f [k+1] (4.179)

The coefficients are computed from (4.138) by substituting the Hermite interpolation poly-
nomial (4.134) into the update formula (4.130). An efficient implementation of BDF
methods is presented below in the discussion of DAE systems. For the test equation
ẋ = Ax, Aw [j] = λ j w [j], we again expand the states in the numerical trajectory in eigen-
vectors of A, x[k] = �N

j=1c[k]
j w [j], and define the growth coefficient for each mode as

µ j = c[k+1]
j /c[k]

j . Absolute stability requires |µ j | ≤ 1. In terms of the {c[k]}, we write

the states at other times as x[k−n] = �N
j=1c[k]

j µ−n
j w [j]. Substitution into (4.179) with

f [k+1] = Ax[k+1] yields

mh∑
n=−1

αn

{
N∑

j=1

c[k]
j µ−n

j w [j]

}
= (�t)β−1 A

{
N∑

j=1

c[k]
j µ j w

[j]

}
(4.180)

Using Aw [j] = λ j w [j] and collecting terms, yields

0 =
N∑

j=1

c[k]
j

{
mh∑

n=−1

αnµ
−n
j − β−1(�t)λ jµ j

}
w [j] (4.181)

Equating the sum in the braces to zero, defining again ω j = −(�t)λ j , and multiplying by
µ

mh

j , we obtain

0 =
mh∑

n=−1

αnµ
mh−n
j − β−1ω jµ

mh+1
j (4.182)

For absolute stability, all growth coefficients that are roots of this stability polynomial must
have |µ j | ≤ 1. Figure 4.13 shows the regions of absolute stability for BDF methods of
various orders p = mh + 1 in the complex plane of ωj. As we are concerned only with
Re(λj) < 0, a method is A-stable (absolutely stable for all �t > 0) if the entire half-plane
Re(ωj) > 0 lies within the region of absolute stability. This is the case for p = 1 and p = 2,
but not for p ≥ 3, as the methods become unstable for complex eigenvalues.

However, we see from Figure 4.13 that even though these higher-order methods are
not A-stable, they do remain absolutely stable when Re(ω j) = −(�t)Re(λ j) � 1. Thus,
when we use a time step much larger than the characteristic time [Re(λ j)]−1 of the mode,
|c[k+1]

j /c[k]
j | < 1 and these modes decay to zero. Thus, these methods are said to have stiff

decay.
From our discussion of the discretized time-dependent diffusion equation (4.174), we

have seen that the fastest modes have spatial wavelengths comparable to the distance between

1

2 1 1 − −1 −1

−1
−1

−
1

1
2

−2

2 1 −1 −2 −
−

−2
−1

1
2

−2

− −1

−1
−

1

2 1 −1 −2 − − −

ta
iit

 B
 e

td
 a

t r
de

r
 1

ta
iit

 B
 e

td
 a

t r
de

r

ta
iit

 B
 e

td
 a

t r
de

r

ta
iit

 B
 e

td
 a

t r
de

r

ta
iit

 B
 e

td
 a

t r
de

r
 2

ta
iit

 B
 e

td
 a

t r
de

r

2 1 −1 −2 −
−

−2
−1

2

2

e
ω

e
ω

e
ω

e
ω

−
e

ω
e

ω

ω ω

ω

ω

2 −

−
−

−2
2

−−2

ω

ω

1
2

st
ae

 r
ei

n
ts

id
e

µ
 1

st
ae

 r
ei

n
ts

id
e

µ
 1

st
ae

 r
ei

n
ts

id
e

µ
 1

st
ae

 r
ei

n
ts

id
e

µ
 1

st
ae

 r
ei

n
ts

id
e

µ
 1

st
ae

 r
ei

n
ts

id
e

µ
 1

2

1

1

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1
1

1

1

1

1

1

Fi
gu

re
4.

13
R

eg
io

ns
of

ab
so

lu
te

st
ab

il
it

y
fo

r
B

D
F

m
et

ho
ds

of
va

ri
ou

s
or

de
rs

.

194 4 Initial value problems

grid points, and that the slowest modes have longer wavelengths comparable to the dimen-
sions of the physical domain. Often, the real physical behavior occurs on these long wave-
lengths and the true solution has little variation from one grid point to the next. Thus,
for the true solution, the fast modes with [Re(λ j)]−1 � (�t) should have cj ≈ 0, and we
only observe significant activity in these modes, cj �= 0, due to the exponential growth of
round-off errors when |µj| � 1. If we use a BDF method with stiff decay, even though we
are not simulating the fast mode dynamics accurately, they do correctly decay to zero in the
true solution. The fast modes therefore do not corrupt the dynamics of interest taking place
on the slow time scales. Therefore, integrators with stiff decay can simulate the dynamics
occurring on the slow time scales of a stiff system using time steps that are very large on
the scale of the fast modes. Essentially, a QSSA is made on the fast mode dynamics.

Symplectic methods for classical mechanics

The integration methods discussed above have been compared in terms of stability and
accuracy; however, no integration method with a finite time step is perfectly accurate. Over
long simulation periods, the discrepancy between the predicted and actual system behavior
may be significant.

This is of importance for applications such as celestial mechanics and molecular dynam-
ics, in which we simulate the motion of a number of interacting particles of masses mα ,
positions rα , velocities vα , with a total potential energy function V (r1, r2, . . . , r N). The
motion of each point mass is governed by Newton’s second law of motion

mα

dvα

dt
= Fα Fα = − ∂

∂rα

V (r1, r2, . . . , r N) (4.183)

In the absence of an external potential or dissipation (frictional forces), the total system
energy is constant,

E =
N∑

α=1

1
2 mα(vα · vα)+ V (r1, r2, . . . , r N) = constant (4.184)

Due to integration errors, this property is generally not satisfied by the numerical trajec-
tory of the system; however, for a special class of integrators, total energy is conserved
(approximately) even over long simulations.

From Noether’s theorem (Arnold, 1989), it is known that the conservation of energy is
related to the invariance of Newton’s equation of motion to time reversal. That is, if we
follow a conservative system for some period of time and then reverse the direction of time,
the system will exactly retrace, in reverse, its previous trajectory. It may be shown that
integration rules that are symplectic (i.e., symmetric with respect to the direction of time)
have favorable energy conservation properties that make them most suitable for simulating
the classical mechanics of conservative systems. A more complete discussion of symplectic
integrators is found in Frenkel & Smit (2001). Here, we merely provide a popular symplectic

Differential-algebraic equation (DAE) systems 195

integrator, the velocity Verlet rule,

rα ← rα + vα(�t)+ (�t)2

2mα

Fα α = 1, 2, . . . , N

vα ← vα + Fα

2mα

(�t) α = 1, 2, . . . , N
(4.185)

compute new forces Fα α = 1, 2, . . . , N

vα ← vα + Fα

2mα

(�t) α = 1, 2, . . . , N

Differential-algebraic equation (DAE) systems

In the previous sections, we have treated systems described by a set of ODEs. We now
consider the addition of algebraic equations to obtain a DAE system. We show how the
BDF method can be modified to accommodate a system of mixed differential and algebraic
equations. Consider the DAE system

M(x)ẋ = f (x) (4.186)

M(x) is a state-dependent mass matrix. If M(x) is nonsingular, we can decouple the set of
equations into standard ODE form

ẋ = M−1 f (x) (4.187)

We consider here the case where M(x) is singular, as when the system is modeled by a
combination of differential and algebraic equations. As a particular example, consider the
system

ẏ = F(y, z)
(4.188)

0 = G(y, z)

System (4.188) is expressed in the DAE form (4.186) as

M ẋ =
[

I 0
0 0

] [
ẏ
ż

]
=

[
F(y, z)
G(y, z)

]
= f (x) (4.189)

BDF method for DAE systems of index one

We now show how the BDF method can be modified to simulate a DAE system when M(x)
is singular (Ascher & Petzold, 1998). The first step is to generate an explicit predictor
polynomial that extrapolates the state behavior at past times (not necessarily uniformly
spaced) into the future,

π(p)(τ j) = x(τ j) = x[k− j] τ j = tk− j − tk
�t

j = 0, 1, 2, . . . , mh (4.190)

This polynomial is constructed easily with Newton interpolation,

π(p)(τ) = a0 + a1(τ − τmh)+ a2(τ − τmh)(τ − τmh−1)
(4.191)+ · · · + amh+1(τ − τmh)(τ − τmh−1) · · · (τ − τ1)(τ)

196 4 Initial value problems

where ak = x[τmh , τmh−1, . . . , τmh−k]. We then generate a corrector polynomial that agrees
with the predictor at uniformly spaced times in the recent past,

π(c)(− j) = π(p)(− j) j = 0, 1, 2, . . . , mh (4.192)

and that also matches the time derivative at tk+1 = tk +�t ,

dπ(c)

dτ

∣∣∣∣
τ=1

= (�t)
dx

dt

∣∣∣∣
tk+1

(4.193)

With x[k+1] = π(c)(1) and M [k+1] = M(x[k+1]), this yields the equation

M [k+1]π̇(c)(1) = (�t) f
(
x[k+1]

)
(4.194)

that we solve for the state x[k+1] at the new time tk+1 = tk +�t .
Rather than construct π(c)(τ), we find it easier to form the polynomial

δπ(τ) ≡ π(c)(τ)− π(p)(τ) δπ(− j) = 0 j = 0, 1, 2, . . . , mh (4.195)

Using Newton interpolation,

δπ(τ) = δπ[1]+ δπ[1, 0](τ − 1)+ δπ[1, 0, −1](τ − 1)(τ)
+ δπ[1, 0, −1, −2](τ − 1)(τ)(τ + 1)+ · · ·
+ δπ[1, 0, −1, −2, . . . , −mh](τ − 1)(τ)(τ + 1) . . . (τ + mh − 1) (4.196)

Starting with δπ[1] = δπ(1) = π(c)(1)− π(p)(1), from δπ(0) = 0 we have

δπ[1, 0] = δπ[0]− δπ[1]

(0− 1)
= 0− δπ(1)

(−1)
= δπ(1) (4.197)

Next, we use δπ(0) = δπ(−1) = 0 to compute

δπ[1, 0, −1] = δπ[0, −1]− δπ[1, 0]

(−1− 1)
= 0− δπ(1)

(−2)
= 1

2
δπ(1) (4.198)

Similarly, as δπ(0) = δπ(−1) = δπ(−2) = 0,

δπ[1, 0, −1, −2] = δπ[0, −1, −2]− δπ[1, 0, −1]

(−2− 1)
= 0− 1

2δπ(1)

(−3)
= δπ(1)

3!
(4.199)

Continuing this approach, we find the general result

δπ[1, 0, −1, −2, . . . , − j] = δπ(1)

j!
(4.200)

The difference polynomial is then

δπ(τ) = δπ(1)

{
1+

mh+1∑
j=1

(
1

j!

)[
j−2∏

k=−1

(τ + k)

]}
(4.201)

Taking the derivative of this polynomial at τ = 1,

δπ̇(1) = δπ(1)

mh+1∑
j=1

(
1

j!

) j−2∑
k=−1

 j−2∏

p=−1
p �=k

(1+ p)

 (4.202)

Differential-algebraic equation (DAE) systems 197

In the sum over k, all terms with k �= −1 evaluate to zero, because in the product over p, a
factor for p = −1 contributes a value of 1+ p = 0. As

j−2∑
k=−1

 j−2∏

p=−1
p �=k

(1+ p)

 =

j−2∏
p=0

(1+ p) =
j−1∏
l=1

l = (j − 1)! (4.203)

we find that

δπ̇(1) = δπ(1)

{
mh+1∑

j=1

(
1

j!

)
(j − 1)!

}
= δπ(1)α−1 α−1 =

mh+1∑
j=1

(
1

j

)
(4.204)

Substituting π̇(c)(1) = δπ̇(1)+ π̇(p)(1) into (4.194) and using (4.204),

M [k+1]
{
α−1δπ(1)+ π̇(p)(1)

} = (�t) f
(
x[k+1]

)
(4.205)

As x[k+1] = π(c)(1) = δπ(1)+ π(p)(1), we substitute for δπ(1) in (4.205) to obtain a non-
linear algebraic equation for the new state x[k+1],

0 = g
(
x[k+1]

) = α−1 M [k+1]x[k+1] − (�t) f
(
x[k+1]

)− M [k+1]U [k]

(4.206)
U [k] = α−1π

(p)(1)− π̇(p)(1)

Starting with an initial guess of x[k+1,0] = π(p)(1), we solve (4.206) using Newton’s method,
for which the Jacobian matrix is

B[k+1] = α−1 M
(
x[k+1]

)− (�t)J
(
x[k+1]

)
B = ∂g

∂xT
J = ∂ f

∂xT
(4.207)

As x changes little from one iteration to the next and α−1 is fixed by mh (fixed leading-
coefficient BDF method), B varies slowly and we can save much CPU time through LU
factorization. This algorithm marches forward in time similarly to an ODE system; however,
for the Newton iterations to be successful, the matrix B[k+1] must be nonsingular. This is
unfortunately not always the case. We can identify the condition that must be met for B[k+1]

to be invertible for the special case of (4.188),

M(x)ẋ = f (x) M =
[

I 0
0 0

]
x =

[
y
z

]
f (x) =

[
F(y, z)
G(y, z)

]
(4.208)

The Jacobian matrix of f (x) takes the partitioned form

J (x) =

(

∂ F

∂ yT

) (
∂ F

∂zT

)
(

∂G

∂ yT

) (
∂G

∂zT

)

 (4.209)

The Newton update matrix (4.207) for this system is then

B(x) =

[
α−1 I − (�t)

∂ F

∂ yT

] [
−(�t)

(
∂ F

∂zT

)]
[
−(�t)

(
∂G

∂ yT

)] [
−(�t)

(
∂G

∂zT

)]

 =

[
B11 B12

B21 B22

]
(4.210)

198 4 Initial value problems

If (∂G/∂zT) is singular, then as �t → 0, B(x) also becomes singular. To see this, consider
a system with two differential and two algebraic equations. Then, as �t → 0, writing
bi j = (�t)ai j , we have

B ≈

α−1 [(�t)a12] [(�t)a13] [(�t)a14]
[(�t)a21] α−1 [(�t)a23] [(�t)a24]
[(�t)a31] [(�t)a32] [(�t)a33] [(�t)a34]
[(�t)a41] [(�t)a42] [(�t)a43] [(�t)a44]

 (4.211)

The determinant of this matrix is

det(B) =
4∑

i1=1

4∑
i2=1

4∑
i3=1

4∑
i4=1

εi1,i2,i3,i4 b1,i1 b2,i2 b3,i3 b4,i4 (4.212)

As �t → 0, the terms with i1 = 1, i2 = 2 dominate the others, and

det(B) ≈
4∑

i3=1

4∑
i4=1

ε1,2,i3,i4 (α−1)(α−1)b3,i3 b4,i4 = α2
−1

4∑
i3=1

4∑
i4=1

εi3,i4 b3,i3 b4,i4 (4.213)

Thus, det(B) ≈ α2
−1det(B22), and if B22 = (∂G/∂zT) is singular, so is B(x) and Newton’s

method (4.207) fails, even in the limit as �t → 0.
If, however, (∂G/∂zT) is nonsingular, then B(x) will not be singular as �t → 0, and the

linear system at each Newton update has a unique solution. If (∂G/∂zT) is nonsingular,
it is also easy to determine a set of consistent initial conditions, i.e., one that satisfies all
algebraic equations. We set y, and then compute z using Newton’s method to solve

0 = G(y, z) (4.214)

If (∂G/∂zT) is nonsingular, we can take a single time derivative,

d

dt

[
ẏ = F(y, z)
0 = G(y, z)

]
⇒ ÿ =

(
∂ F

∂ yT

)
ẏ +

(
∂ F

∂zT

)
ż 0 =

(
∂G

∂ yT

)
ẏ +

(
∂G

∂zT

)
ż

(4.215)
to obtain an equivalent system with a nonsingular mass matrix,

 I 0

0

(
∂G

∂zT

)
[

ẏ
ż

]
=

 F(y, z)

−
(

∂G

∂ yT

)
F(y, z)

 (4.216)

Definition The index of a DAE system is the number of differentiations required to convert
it into an ODE system with a nonsingular mass matrix.

For the example above with nonsingular (∂G/∂zT), the index is 1. High-index DAE
systems are not uncommon, and one must perform the necessary reduction in index to 1
through differentiations in order to use the BDF method presented above. Also, for high-
index problems, it can be challenging to identify a consistent set of initial questions.

In MATLAB, ode15s can simulate index-1 DAE systems. In other languages, the package
DASSL by Petzold and coworkers is popular and performs well. A further discussion of
DAEs may be found in Ascher & Petzold (1998).

Differential-algebraic equation (DAE) systems 199

Example. Dynamics on the 2-D unit circle

We demonstrate using ode15s to solve a DAE-IVP for a simple system in which an algebraic
equation constrains a 2-D trajectory to the unit circle,

dx1

dt
= f1 = −[x1 − cos θend]+ [x2 − sin θend]

0 = f2 = x2
1 + x2

2 − 1 (4.217)

The trajectory is a simple relaxation to (cos θend, sin θend) along the unit circle. The following
routine returns the function vector:

function f = calc f(t,x);
f = zeros(2,1);
theta end = 10/180*pi;
f(1) = -(x(1) - cos(theta end)) + (x(2) - sin(theta end));
f(2) = x(1) ˆ2 + x(2) ˆ2 - 1;
return;

We solve this DAE-IVP from an initial guess with x [0]
1 = 0 by

x 0 = [0; 0.8]; % set initial guess
M = [1 0; 0 0]; % set mass matrix
Options = odeset(‘Mass’,M,‘MassSingular’,‘yes’, . . .

‘MState Dependence’,‘none’); % inform ode15s of mass matrix
[t traj,x traj] = ode15s(@calc f, [0 10], x 0, Options);

Here, we have a constant mass matrix, but we also could have provided a function that returns
M(t, x) were the mass matrix state-dependent (see help odeset for further details). Note
that for x [0]

1 = 0, the two possible values of x2 that satisfy the algebraic equation f2 = 0
are x [0]

2 = ±1, but here the initial guess is x [0]
2 = 0.8. The resulting trajectory (Figure 4.14)

shows that the trajectory starts on the unit circle, satisfying f2 = 0 and demonstrates that
ode15s first computes a consistent initial state.

Example. Heterogeneous catalysis in a packed bed reactor

We demonstrate the DAE-IVP use of ode15s for a more realistic chemical engineering
problem of modeling an isothermal packed bed reactor with a solid-catalyzed gas-phase
reaction A ⇔ B+ C. First, A adsorbs reversibly to a vacant site S on the catalyst. The
adsorbed species A · S then reacts to form an adsorbed B · S and a free C molecule in the
gas phase. The adsorbed product B · S must then desorb, freeing again the active site.

A+ S ⇔ A · S r̂aA = kaA pAcv − kdAcA·S

A · S ⇔ B · S+ C r̂s = ks

[
cA·S − cB·S pC

Ks

]
(4.218)

B · S ⇔ B+ S r̂dB = kdBcB·S − kaB pBcv

200 4 Initial value problems

1

2

1

2

1

2

1

Figure 4.14 Trajectory for DAE-IVP along the unit circle.

cA·S, cB·S, and cv are the concentrations (moles per unit mass of catalyst) of adsorbed A,
adsorbed B, and vacant sites S. A site balance yields

ctot = cv + cA·S + cB·S (4.219)

where ctot is the total concentration of active sites. pA, pB, and pC are the partial pressures
of A, B, and C in the gas phase. If we assume that the surface reaction step is rate limiting,
the reaction rate (moles per unit time per unit mass of catalyst) is

r̂R
∼= r̂s = ks

[
cA·S − cB·S pC

Ks

]
(4.220)

and the absorption/desorption steps are in equilibrium,

r̂aA
∼= 0 ⇒ 0 = KaA pAcv − cA·S KaA = kaA/kdA

r̂aB
∼= 0 ⇒ 0 = KaB pBcv − cB·S KaB = kaB/kdB

(4.221)

We obtain KaA, KaB, and ctot from the adsorption isotherms of A and B.
We conduct the reaction in a packed bed reactor, assuming that the heat transfer is

sufficiently fast for the reactor to be isothermal. The mass W of catalyst in a region of
volume V in the reactor is W = ρs(1− φ)V, where ρs is the density of the solid catalyst
and φ is the void fraction of the bed. Let FA(W) be the flow rate (moles per unit time) of
A passing through the particular surface in the reactor for which the mass of catalyst in
the region between this surface and the inlet is W. The mole balance on A for the region
between W and W + δW is

0 = FA(W)− FA(W + δW)− (δW)r̂R (4.222)

As δW → 0 we obtain an ODE for FA(W) (and likewise for B and C),

d FA

dW
= −r̂R

d FB

dW
= r̂R

d FC

dW
= r̂R (4.223)

Differential-algebraic equation (DAE) systems 201

Let the feed stream be a gas mixture of A and a nonreactive diluent gas G. Then, for a
specified volumetric flow rate υ0, total pressure P0, and inlet temperature T0, ideal-gas
behavior yields

FA0 = pA0υ0

RT0
FG0 = (P0 − pA0)υ0

RT0
(4.224)

Similarly, from the molar flow rates, local pressure P, and local temperature T, we can
compute the local partial pressures and volumetric flow rate,

υ = Ftot RT

P
Ftot = FA + FB + FC + FG0 (4.225)

p j = Fj RT

υ
=

(
Fj

Ftot

)
P j = A, B, C (4.226)

We compute the local pressure using the Ergun equation to model the pressure drop across
a packed bed (Fogler, 1999). For a bed of cross-sectional area Ac, catalyst solid density ρs,
and void fraction φ,

d P

dW
= −

[
β0

Ac(1− φ)ρs

](
T

T0

)(
P0

P

)(
Ftot

Ftot,0

)
(4.227)

where

β0 = γ (1− φ)

ρ0gc Dpφ3

[
150(1− φ)µ

Dp
+ 1.75γ

]
γ = ρ0υ0

Ac
(4.228)

Dp is the particle diameter, ρ0 is the inlet gas density, µ is the gas viscosity, and in SI units
the conversion factor gc is 1.

Above we have a set of governing equations, some differential and some algebraic.
Here, we could manipulate the equations analytically to obtain a set of purely differential
equations, but this may not always be possible. Thus, we simulate the system as a DAE-IVP
with the state vector

x = [
FA FB FC P cA·S cB·S cv

]T
(4.229)

For the DAE format M ẋ = f (x), the mass matrix is

M =
[

I4×4 O4×3

O3×4 O3×3

]
(4.230)

where I and O are respectively the identity and zero matrices of the specified sizes. The
functions in the DAE model are

f1 = −r̂R f2 = r̂R f3 = r̂R

f4 = −
[

β0

Ac(1− φ)ρs

](
P0

P

)(
Ftot

Ftot, 0

)
(4.231)

f5 = KaA pAcv − cA·S f6 = KaB pBcv − cB·S
f7 = ctot − cv − cA·S − cB·S

202 4 Initial value problems

a

1

2

2

1

2

1

2

1

× 1 −

× 1 −

A

A
B
v

B

c

 c
at

s

Figure 4.15 (a) Molar flow rate and (b) catalyst site concentrations as functions of catalyst mass in a
packed bed reactor.

To evaluate these functions, we first have to compute some intermediate quantities from a
set of auxiliary equations

Ftot = FA + FB + FC + FG0

pA =
(

FA

Ftot

)
P pB =

(
FB

Ftot

)
P pC =

(
FC

Ftot

)
P (4.232)

r̂R = ks

[
cA·S − cB·S pC

Ks

]

For our system, we use the parameters

P0 = 1 atm pA0 = 0.1 atm T0 = T = 373 K

ctot = 10−3 moles of sites per kilogram of catalyst

ρ0 = 2.9 kg/m3 µ = 2× 10−5Pa s υ0 = 0.001 m3/s
(4.233)

Dp = 5 mm φ = 0.64 Ac = 0.0079 m2 ρs = 900 kg/m3

KaA = 4.2× 10−5 Pa−1 KaB = 2.5× 10−5 Pa−1

ks = 30 s−1 Ks = 9.12× 105 Pa

PBR DAE sim.m simulates the packed bed reactor for a user-specified total mass of catalyst
in the reactor (example results are shown in Figure 4.15).

Parametric continuation 203

Xs

rnin
ints

λ λ 1

s

λ

Xs Θ λ s
Xs Θ1

Xs Θ

Figure 4.16 Arc length continuation of a nonlinear algebraic system, showing solution path passing
through a turning point.

Parametric continuation

Above, we have focused upon simulating dynamic systems M ẋ = f (x; Θ); however, we can
use these techniques to study how the solution xs(Θ) of an algebraic system f (x; Θ) = 0
depends upon Θ. Let the parameters vary along some path Θ(λ), 0 ≤ λ ≤ 1, such as

Θ(λ) = (1− λ)Θ0 + λΘ1 (4.234)

We wish to study how the solution xs(Θ(λ)) varies along this path. An obvious approach
would be to derive a system of ODEs for dΘ/dλ and dxs/dλ; however, as shown in the sup-
plemental material, the resulting ODE system encounters difficulties at turning points where
the slope of dxs/dλ diverges (Figure 4.16). By contrast, if we define s to be the arc length
along the path in (xs, λ) space, and solve a system of ODEs for dxs/ds and dλ/ds, turning
points pose no difficulty as both derivatives remain finite. An algorithm for this arc length
continuation method is presented in the supplemental material. arclength continuation.m
constructs the curve (xs, λ) for a specified linear path (4.234). The syntax is

[x c, Param c, lambda c, fnorm c, stab c] = . . .
arclength continuation(fun name, . . .
Param 0, Param 1, x0, AcrLenParam);

fun name is the function that returns the function vector,

function f = fun name(x, theta);

Param 0 and Param 1 are Θ0 and Θ1. The initial guess of the solution for 0 = f (x; Θ0)
is x0. ArcLenParam is an optional structure that varies the performance of the algorithm;
see the help utility for its description. x c and Param c are arrays in which each column
vector contains the state xs(λ) or parameter vector Θ(λ) for a point along the solution curve
0 = f (xs(λ); Θ(λ)). lambda c contains the value of λ for each point. fnorm c contains the
function norms for each point (should be near zero). stab c stores a value of 1 if the point is
stable or critically stable and a value of 0 if the point is unstable. This routine traces only a
single curve. For a more complex routine that can handle branching, see the AUTO package
(indy.cs.concordia.ca/auto/).

204 4 Initial value problems

Example. Multiple steady states in a nonisothermal CSTR

We demonstrate the use of arclength continuation.m for the study of multiple steady states
in a nonisothermal CSTR. Consider a perfectly-mixed stirred-tank reactor with A reacting
to form B

A → B r = k1(T)cA (4.235)

The temperature dependence of the rate constant is

k1(T) = k1(Tref) exp

[
− Ea

R

(
1

T
− 1

Tref

)]
(4.236)

For constant volume CSTR with no volume change due to reaction, the mole balances for
a volumetric feed rate υ are

d

dt
{V cA} = υ(cA,in − cA)− V k1(T)cA

(4.237)
d

dt
{V cB} = υ(cB,in − cB)+ V k1(T)cA

Assuming constant density ρ and specific heat capacity Ĉp of the reaction medium, the
enthalpy balance on the reactor is

d

dt
{VρĈpT } = υρĈp(Tin − T)− V (�H)k1(T)cA −UA(T − Tc) (4.238)

�H is the heat of reaction (negative for exothermic reactions), UA is the product of the heat
transfer coefficient and area for a coolant jacket, through which flows at high rate a coolant
of temperature Tc.

Dividing by V and setting the time derivatives to zero, we have the following three
algebraic equations for the steady-state behavior

dcA

dt
= υ

V
(cA,in − cA)− k1(Tref) exp

[
− Ea

R

(
1

T
− 1

Tref

)]
cA = 0

dcB

dt
= υ

V
(cB,in − cB)+ k1(Tref) exp

[
− Ea

R

(
1

T
− 1

Tref

)]
cA = 0 (4.239)

dT

dt
= υ

V
ρĈp(Tin − T)− (�H)k1(T)cA − U A

V
(T − Tc) = 0

Defining the dimensionless time, concentrations, and temperature

τ = tυ

V
ϕA = cA

cA,in
ϕB = cB

cA,in
θ = T

Tin
(4.240)

the dimensionless Damköhler number

Da = k1(Tin)V

υ
(4.241)

and the scaled heat of reaction, cooling efficiency, and activation energy

β = (�H)cA,in

ρĈpTin

χ = U A

υρĈp

γ = Ea

RTin
(4.242)

Parametric continuation 205

the governing equations (4.239) can be written in dimensionless form

dϕA

dτ
= 1− ϕA − (Da) exp

[
γ (θ − 1)

θ

]
ϕA = 0

dϕB

dτ
= ϕ

(in)
B − ϕB + (Da) exp

[
γ (θ − 1)

θ

]
ϕA = 0 (4.243)

dθ

dτ
= 1− θ − β(Da) exp

[
γ (θ − 1)

θ

]
ϕA − χ (θ − θc) = 0

This is a set of three nonlinear algebraic equations with the six dimensionless parameters
ϕ

(in)
B , Da, β, χ , γ , θ c. We set ϕ

(in)
B = 0, and note that ϕB can be obtained directly from the

values of ϕA and θ ,

ϕB = (Da) exp

[
γ (θ − 1)

θ

]
ϕA (4.244)

Therefore, we can remove it from the list of unknowns and compute it whenever needed;
i.e., we make it an auxiliary variable. Moreover, we note that ϕB does not appear in either
the equation for ϕA or that for θ , and thus we do not need to compute its value until the
solution is found. We therefore reduce the system to two equations,

f1(ϕA, θ) = 1− ϕA − (Da) exp

[
γ (θ − 1)

θ

]
ϕA = 0

(4.245)

f2(ϕA, θ) = 1− θ − β(Da) exp

[
γ (θ − 1)

θ

]
ϕA − χ (θ − θc) = 0

with the five dimensionless parameters Da, β, χ , γ , θ c.
We now use arc-length continuation to draw curves of the dependence of ϕA and θ upon

Da for fixed, β, χ , γ and θc = 1. We start our calculations at Da = 10−2, for which good
initial guesses are ϕA = θ = 1. Defining the parameter vector as

Θ = [log(Da) β χ γ θc]T (4.246)

using the fixed values β, χ, γ, θc = 1, we vary Da from Da0 = 10−2 at λ = 0 to Da1 =
102 at λ = 1. nonisothermal CSTR Da scan.m performs this calculation using nonisother-
mal CSTR calc f.m.

We present results with β = −1 (exothermic reaction), χ = 0 (no heat transfer to coolant
jacket), and θc = 1, for various values of γ , the dimensionless activation energy. When
γ = 1, the temperature increases smoothly from a low Da limit of 1 to an upper Da limit
of 2 (Figure 4.17). As we increase the activation energy to γ = 5, the upturn becomes
more pronounced (Figure 4.18). At γ = 8 the curve becomes vertical, and the change in
temperature is very sudden (Figure 4.19).

At higher activation energies, e.g. γ = 12, the system exhibits multiple steady states
(Figure 4.20). As we initially increase Da from a small value, we reach a turning point at
which the steady state becomes unstable. Further increase in Da at this point results in a
sudden jump to a different steady state with a higher temperature (ignition). If we were then

206 4 Initial value problems

1

2

2

1

1

1

12

1

1 2 1 1 1 1 1 1 2

a

1 2 1 1 1 1 1 1 2

a

ϕ
A

θ

Figure 4.17 Nonisothermal CSTR behavior for γ = 1 (β = −1, χ = 0, θc = 1).

1

2

2

1

1

1

12

1

1 2 1 1 1 1 1 1 2

a

1 2 1 1 1 1 1 1 2

a

ϕ
A

θ

Figure 4.18 Nonisothermal CSTR behavior for γ = 5 (β = −1, χ = 0, θc = 1).

to decrease Da, we would reach another turning point at which the system jumps back to
the low-temperature steady state (extinction). For Da values between the turning points, the
system has three steady states, but only the upper and lower ones are stable. Clearly, it is best
to design the system to operate safely away from this region of rapid, difficult-to-control,
transitions.

MATLAB summary 207

1

2

2

1

1

1

12

1

1 2 1 1 1 1 1

a

1 2 1 1 1 1 1

a

ϕ
A

θ

Figure 4.19 Nonisothermal CSTR behavior for γ = 8 (β = −1, χ = 0, θc = 1).

2

2

1

1

1

12

1

a
1 −2 1 −1 1

a
1 −2 1 −1 1

1

ϕ
A

θ

Figure 4.20 Nonisothermal CSTR behavior for γ = 12 (β = −1, χ = 0, θc = 1).

MATLAB summary

The two main routines for solving ODE-IVPs are ode45 and ode15s. For nonstiff
problems, the explicit ode45 method is recommended. For stiff systems, the implicit
ode15s is preferred. A list of available ODE solvers is returned by help funfun. For

208 4 Initial value problems

the ODE system ẋ = f (t, x; Θ), we must at a minimum supply a routine that returns
f (t, x; Θ) with the syntax

function f = calc f(t, x, P1, P2, . . .);

P1, P2, . . . are optional fixed parameters. The IVP is solved by

[t traj, x traj] = ode45(@calc f, t span, x 0, Options, P1, P2, . . .);

t span contains the start and end times of the simulation, or optionally a list of discrete times
at which the states are needed. x 0 is the initial state and Options is a structure, managed
by odeset, that allows the user to modify the solver behavior (use [] to accept the default
options). P1, P2, . . . are optional fixed parameters passed to the function routine, here
calc f.

Implicit methods such as ode15s require the Jacobian matrix J = ∂ f /∂xT. If only a
routine such as calc f is supplied, ode15s estimates the Jacobian by finite differences.
For large, sparse systems, the work associated with Jacobian estimation can be reduced
significantly by supplying a matrix with the same sparsity pattern as the Jacobian, through
the “JPattern” field of Options. Even better, we can supply a routine that computes the
Jacobian,

function Jac = calc Jac(t, x, P1, P2, . . .);

and set the “Jacobian” field of Options to its name, here ‘calc Jac’.
For a DAE system M ẋ = f (t, x; Θ), ode15s may be used if the system is of index one,

supplying either a constant mass matrix or a function,

function M = calc Mass(t, x);

and informing ode15s of its identity through the “Mass” field of Options, along with the
appropriate specifications of “MStateDependence” and “MassSingular.” More general
DAE systems of the fully implicit form F(t, x, ẋ) = 0 can be solved by ode15i. The low-
order implicit methods ode23s and ode23tb can be useful for very stiff systems, such as
discretized PDEs (discussed later in Chapter 6).

odeplot plots the state trajectory, and odeprint prints it to the screen. Related functions
for 2-D and 3-D plots are odephas2 and odephas3.

Problems

4.A.1. Consider the following ODE system with a steady state at (1, 2),

ẋ1 = f1(x1, x2) = −2(x1 − 1)(x2 − 2)2 + (x1 − 1)(x2 − 2)− (x2 − 2)− 3(x1 − 1)
ẋ2 = f2(x1, x2) = −(x1 − 1)+ (x1 − 1)2(x2 − 2) (4.247)

Derive the linearized ODE system that describes the response of the system to small per-
turbations around the steady state. Is the steady state stable? Will the steady state exhibit
an oscillatory response to small perturbations? Confirm your results by writing a program
to simulate the response to a random, small perturbation.

Problems 209

L3 = 50 cm

L1 = 50 cm

Lp = 20 cm

L2 = 100 cm

cnstant
diaeter

D3 = 100 cm

cnstant
diaeter

D1 = 35 cm

variae
diaeter

D(z)

z1 = 50 cm

z0 = 0 cm

z2 = 75 cm, meas. D(z2) = 40 cm

z5 = 150 cm

z3 = 100 cm, meas. D(z3) = 55 cm

z4 = 125 cm, meas. D(z4) = 85 cm

cindrica ie
 dia Dp = 1 cm.

ie tet t atseric ressre

Figure 4.21 Tank of variable cross-sectional area.

4.A.2. Compute the value of the following definite integral using both dblquad and Monte
Carlo integration,

ID =
∫ 2

1

∫ √
x

0
[(x − 1)2 + y2]dydx (4.248)

4.A.3. Consider the 1-D motion of a point mass, connected to the origin by a harmonic
spring, that experiences a frictional drag force and a time-dependent external force. The
equation of motion is

m
d2x

dt2
= −K x − ζ

dx

dt
+ Fext(t) (4.249)

Let the mass be 1 kg, and let the harmonic frequency ωc =
√

K/m be 2π rad/s. Let the
external force be Fext(t) = (10−2 N)sin (ωt), where ω is set at 0.01ωc, 0.1ωc, 0.5ωc, 0.9ωc

0.99ωc, and 0.999ωc. Plot x(t) for each of these cases when ζ = 0 and describe what
happens as ω → ωc. Repeat for non zero ζ , and describe how the behavior changes as ζ

increases.

4.B.1. Consider the axisymmetric tank shown in Figure 4.21. We want to estimate the time
that it takes for the tank to drain if filled with water (density 1000 kg/m3, viscosity 0.001
Pa s). Let h(t) be the height of water in the tank, h(0) = 2m. vp(t). The mean velocity in
the drain pipe and the volumetric flow rate out of the tank is

υout(t) = π

4
D2

pvp = π

4
[D(h)]2

∣∣∣∣dh

dt

∣∣∣∣ (4.250)

To obtain vp, we use the engineering Bernoulli equation to relate the velocity and pressure

210 4 Initial value problems

at z = h(t) to the values at the pipe outlet at z = −Lp,[
1

2
ρ

(
dh

dt

)2

+ patm+ρgh

]
−

[
1

2
ρv2

p + patm + ρg(−Lp)

]
= net viscous loss > 0

(4.251)
The net viscous loss is dominated by the entrance flow at the pipe outlet and the viscous
dissipation within the outlet pipe itself,

net viscous loss ≈ KL

(
1

2
ρv2

p

)
+ fD

(
Lp

Dp

)(
1

2
ρv2

p

)
(4.252)

For a well-rounded entrance, K L ≈ 0.2. The friction factor fD is a function of the Reynolds’
number in the pipe,

Re = ρvp Dp

µ
(4.253)

For laminar flow when Re < 2100, fD = 64/Re. For Re > 4000, the friction factor can be
estimated from the empirical Colebrook equation

1√
fD
= −2 log10

[
(e/Dp)

3.7
+ 2.51

Re
√

fD

]
(4.254)

e is the characteristic surface roughness length of the pipe wall, and for commercial steel is
0.045 mm. In the intermediate range 2100 < Re < 4000, it is difficult to predict the friction
factor.

Plot the height of water and the volume of water in the tank as functions of time. How
long does it take for the tank to empty?

4.B.2. For the test equation, ẋ = λx, Re(λ) < 0, plot the region of absolute stability for the
RK4 method in the complex plane of ω = −(�t)λ.

4.B.3. Consider the calculation of radial integrals in three dimensions,

IF =
∫ R

0
f (r)4πr2dr = R3

∫ 1

0
f (ξ R)4πξ 2dξ (4.255)

Write a routine that computes the Gaussian quadrature weights and nodes {ξ 0, ξ 1, . . . , ξN}
for N = 3, 5, 7. For f (r) = 1+ r + r2 + · · · + rm, R = 1, plot the error in the computed
integral as a function of degree m. Compare the errors to those obtained from Newton Cotes
integration with N + 1 support points.

4.C.1. Consider again the tank in Problem 4.B.1. We want to maintain the height of water
at hset = 1.5 m by adding an input water stream of volumetric flowrate υin. Compute the
inlet flow rate υin,set that maintains hset at steady state.

Next, let us say that there is a second inlet whose flow rate υ in,2(t) we cannot control.
We then must use feedback control to vary υ in(t) in order to maintain a constant height. Let
the error of the height from its set point be e(t) = h(t)− hset and let υin(t) = υin,set + u(t),
where for a proportional integral derivative (PID) controller

u(t) = KC

[
e(t)+ 1

τI

∫ t

0
e(s)ds + τD

de

dt

]
(4.256)

Problems 211

For various choices of the controller tuning parameters {KC, τ I, τD}, simulate the closed-
loop response for several perturbations. Start at steady state with u(0) = e(0) = υin,2(0) = 0
and immediately change υ in,2 to a constant value chosen at random within 0 ≤ υ in,2 ≤
(0.1)υ in,set. For each response, a measure of how well the controller rejects the disturbance
is

F(KC, τI, τD) =
∫ tH

0
|e(t)|2dt (4.257)

tH is a horizon time suitably long for the response to be measured; for example, the time
required for the height to approach within 99% of its new steady-state value if we were to
take no control action for υin,2 = (0.1)υin,set. Of all the {KC, τ I, τD} sets that you try, report
the one with the best F(KC, τ I, τD), averaged over many disturbances. If at any time during
a simulation, h(t) exceeds 2 or drops below 0, stop and reject the controller design.

5 Numerical optimization

Many problems in chemical engineering are expressed mathematically as optimization
problems, and involve finding the particular x that minimizes some cost function F(x).
Each component of x may vary either continuously or discretely. In this chapter, we assume
that each xj varies continuously. In Chapter 7, we consider stochastic techniques that can be
used with discretely-varying parameters.

An optimization problem may be unconstrained, in which case each xj can take any real
value, or it can be constrained, such that an allowable x must satisfy some collection of
equality and inequality constraints

g(x) = 0 or h(x) ≥ 0 (5.1)

We consider first unconstrained problems, and then treat constraints. Here, the focus is
upon methods that identify local minima; i.e., points that are lower in cost function than
their neighbors. The stochastic methods of Chapter 7 return (eventually) global minima;
therefore, the reader is referred to that discussion if identifying the global minimum is
necessary.

Numerical optimization problems arise in many contexts. To predict the geometry of a
molecule, we find the conformation of its atoms with the lowest potential energy. In process
design x contains parameters such as equipment sizes, flow rates, temperatures, etc., and
the cost function is a measure of the economic cost of operating the process. We fit a
mathematical model for a system by minimizing the sum of squared differences between
the model predictions and experimental data. In optimal control, we choose the best set of
control inputs to maintain a process at the desired set point.

In addition to a discussion of the basic techniques for identifying local minima in con-
tinuous parameter space, the use of optimization routines in A AB is demonstrated. As
these routines are part of an optional tiiatin tit , an alternative routine is provided
that can be used without the toolkit.

Local methods for unconstrained optimization problems

We begin by considering iterative techniques that start at some initial guess x[0], and gen-
erate a sequence of estimates x[1], x[2], . . . that (hopefully) converges to a local minimum
xmin of F(x). That is, for x within |x − xmin| ≤ ε, ε > 0, F(x) ≥ F(xmin). If we envision
F(x) to be a physical elevation, a local minimum lies at the bottom of a “valley,” and

212

Gradient methods 213

we move to it from x[0] by descending “downhill” until we cannot decrease F(x) any
further.

To use these methods, we must supply at least a routine that returns the cost function
value F(x) for an input x. Gradient methods in addition require knowledge of the gradient
vector γ(x) = ∇F |x, and Newton methods require knowledge (or an approximation) of
the Hessian matrix

H = ∇2 F = H T Hjk(x) = ∂2 F

∂x j∂xk

∣∣∣∣
x

= ∂γk

∂x j

∣∣∣∣
x

= ∂2 F

∂xk∂x j

∣∣∣∣
x

= Hkj (x) (5.2)

While these derivatives can be estimated by finite differences, for large systems it is helpful
to supply them directly for an input x. With knowledge of higher-order derivatives, an
optimization routine has a better understanding of the local shape of the cost function
surface, and can search more efficiently for a local minimum.

The simplex method

The simplex method, implemented as fminsearch in the optional MATLAB optimization
toolkit, requires only a routine that returns F(x). While simplex methods are used commonly
for linear programming problems with linear cost functions and constraints (Nocedal &
Wright, 1999), for unconstrained optimization with nonlinear cost functions, the gradient
and Newton methods discussed below are preferred. Thus, we provide here only a cursory
description, and refer the interested reader to the supplemental material in the accompanying
website for further details.

The basic idea is easiest to see for a 2-D problem (Figure 5.1). In �2, we form a triangle
with vertices at x[0] and the two points

x[1] = x[0] + l1e[1] x[2] = x[0] + l2e[2] (5.3)

We want to move {x[0], x[1], x[2], . . .} so that the triangle comes to enclose a local minimum
xmin while shrinking in size. In Figure 5.1, a typical sequence of simplex moves is shown,
if the farther away a point is from xmin, the higher is its cost function. First (upper left),
the vertex of highest cost function value is moved in the direction of the triangle’s center
towards a region where we expect the cost function values to be lower (upper right). After a
sequence of such moves (lower right), the triangle eventually contains in its interior a local
minimum (we hope). At this point, the size of the triangle is reduced until it tightly bounds
the local minimum (lower left). In practice, both vertex moves and triangle shrinking occur
throughout the calculation, as the vertex moves are most likely to succeed when the triangle
is small enough that F(x) varies linearly over the triangle region. In�N the triangle becomes
a simplex with N + 1 vertices.

Gradient methods

Algorithms that use knowledge of the gradient vector γ(x) = ∇F |x are more efficient,
because the gradient points in the “uphill” direction of steepest increase in cost function

214 5 Numerical optimization

x2

x2

x2

x2

x1

x 1

x1

x1

x

x
x

x

x i n

x i n

x i n

x i n

Figure 5.1 The simplex method moves the vertices of the simplex (in two dimensions, a triangle)
until it contains the local minimum, and shrinks the simplex to find the local minimum.

(Figure 5.2). Thus, the opposing direction of steepest descent d(x) = −γ(x) points directly
“downhill” and any vector p with p · γ(x) < 0 also points downhill. If x[k] is the current
estimate of the minimum, we generate a search direction p[k] such that p[k] · γ(x[k]) < 0.
Then, we move a step length a[k] > 0 in this direction to a new estimate x[k+1] = x[k] +
a[k] p[k] with a lower cost function value

F
(
x[k+1] = x[k] + a[k] p[k]

)
< F

(
x[k]

)
(5.4)

As p[k] · γ(x[k]) < 0, this is possible to achieve, at least for very small a[k], when
|γ(x[k])| �= 0 as

F
(
x[k] + εp[k]

) = F
(
x[k]

)+ ε
[

p[k] · γ(x[k]
)]+ O[ε2] (5.5)

When |γ(x[k])| = 0, x[k] is an extremum (“flat point”), and as we move downhill in cost
function at each step, x[k] is likely a local minimum. In practice (5.4) is insufficient to
ensure convergence, as it may happen that |F(x[k+1])− F(x[k])| → 0 too quickly. Thus,
we require a[k] to also satisfy a criterion for a minimum acceptable rate of descent
(Figure 5.3),∣∣F(

x[k]
)− F

(
x[k] + a[k] p[k]

)∣∣
a[k]

≥ χ1
[− γ[k] · p[k]

]
χ1 ∈ (0, 1) (5.6)

and a sufficient decrease in steepness (Figure 5.4),

∣∣p[k] ·∇F
∣∣
x[k]+a[k] p[k]

∣∣ ≤ χ2

∣∣p[k] · γ[k]
∣∣ χ2 ∈ (χ1, 1) (5.7)

The algorithm for a gradient minimizer is easy to program,

Gradient methods 215

2

1

x in

steeest
descent
vectr
d

radient
vectr

γ vaid
d wni
searc

directin
p

x

 cnstant an cntr ines
1 2

Figure 5.2 Contour plot of F(x) showing the gradient and steepest descent directions at x[k]. Accept-
able search directions point downhill.

slope of F at initial point
large step moves beyond minimum,
average slope over step is too small

compared to initial slope

average slope over step is sufficiently
large compared to initial slope (unacceptable step)

(acceptable step)

x [k+1]

x [k] F(x)

Figure 5.3 Taking too large a step in the search direction violates the criterion of sufficient rate of
descent.

Make initial guess x[0]

Compute initial cost function, gradient F(x[0]), γ[0] = γ(x[0])
for k = 0, 1, 2, . . . , kmax

if |γ[k]| ≤ δabs, STOP and accept x[k] as local minimum
Generate search direction p[k] such that p[k] · γ[k] < 0
Find a[k] > 0 such that descent criteria are met,

F
(
x[k] + a[k] p[k]

)
< F

(
x[k]

)∣∣F(
x[k]

)− F
(
x[k] + a[k] p[k]

)∣∣
a[k]

≥ χ1
[− γ[k] · p[k]

]
∣∣p[k] ·∇F

∣∣
x[k]+a[k] p[k]

∣∣ ≤ χ2

∣∣p[k] · γ[k]
∣∣

216 5 Numerical optimization

se at initia int

re stee tan
initia int

naccetae

ess stee tan
initia int

accetae

x

x

Figure 5.4 Taking too small a step in the search direction violates the condition of sufficient decrease
in steepness.

Set new estimate, x[k+1] = x[k] + a[k] p[k]

repeat for loop k = 0, 1, 2, . . . , kmax

The two unspecified steps in this algorithm are: (1) the selection of a search direction p[k],
and (2) the selection of a step size a[k]. We discuss each in turn, starting with the choice of
step size.

Strong and weak line searches

There are two general approaches to compute a[k]. In a strong line search, we find the value
of a[k] that minimizes F(x) along the line emanating from x[k] in the direction p[k]. However,
as the search direction probably does not point directly at xmin, much of this effort is wasted.
Thus, a weak line search, in which we use a simple method to generate an acceptable a[k]

without requiring it to be a line minimum, is often used instead.
Because a strong line search is a minimization in only one variable, a[k], we can use

robust search methods that are infeasible in multiple dimensions. Essentially, we have the
problem of minimizing the cost function

f (a) = F
(
x[k] + a p[k]

) d f

da
= p[k] · γ(x[k] + a p[k]

)
(5.8)

Because d f/da|0 < 0, we can increase a from zero until we find a segment in which d f/da
changes sign; thus, a line extremum must lie within this region. Then, either through interval-
halving or by fitting a polynomial π (a) to f (a) and/or d f/da and finding where dπ/da = 0,
we identify the a[k] that minimizes (5.8).

It may be of little help to identify the line minimum if the search direction itself does not
point at xmin. Thus, a weak line search is often an attractive option. A common method is
the backtrack line search, which starts with an initial step amax. If amax does not satisfy the

Gradient methods 217

x i n

x1 x

x2

x

d

Figure 5.5 Steepest descent method results in a zig-zag trajectory in steep valleys that yields poor
convergence.

descent criteria, it is halved until an acceptable value is found:

a[k] = amax
(5.9)

a[k] ← a[k]/2, iterate until acceptable step size found

amax is obtained by fitting a low-order polynomial in a to F(x[k] + a p[k]),

F
(
x[k] + a p[k]

) ≈ c0 + c1a + c2a2 (5.10)

The expansion coefficients are obtained at the cost of one additional function evaluation at
a large step size a′,

c0 = F
(
x[k]

)
c1 = p[k] · γ[k] < 0 c2 =

[
F
(
x[k] + a′ p[k]

)− c0 − c1a′
]

(a′)2

(5.11)
The minimum of this quadratic polynomial in [0, a′] sets amax,

amax =
{−c1/2c2, c2 > 0

a′, c2 ≤ 0
(5.12)

If F(x) is itself quadratic, and a′ is large enough, amax is the line minimum, and this approach
is a strong line search.

Choosing the search direction

Once an appropriate a[k] has been found (since we require the search direction to be one
of initially decreasing cost function, such a step always exists, even if it is very small),
x[k+1] = x[k] + a[k] p[k] is the new estimate of the minimum. The new gradient, γ[k+1], and
steepest descent, d [k+1] = −γ[k+1], vectors are computed, and we then choose a new search
direction p[k+1]. It must be a descent direction, γ[k+1] · p[k+1] < 0, but which of the infinite
number of descent directions should we choose?

The most obvious choice, the method of steepest descent, searches always in the direction
of steepest descent, p[k+1] = −γ[k+1]. For the first iteration, this is the logical choice. At
successive iterations, however, the steepest descent method converges slowly as it often
yields zig-zag trajectories when travelling down steep valleys (Figure 5.5).

218 5 Numerical optimization

In the conjugate gradient method, this zig-zag behavior is reduced by mixing-in a portion
of the previous search direction such that the trajectory tends not to double back upon itself,

p[k+1] = −γ[k+1] + β [k] p[k] (5.13)

β[k+1] is commonly chosen by one of the following two formulas:

β [k] =

γ[k+1] · γ[k+1]

γ[k] · γ[k]
, Fletcher–Reeves (CG-FR)

γ[k+1] · (γ[k+1] − γ[k]
)

γ[k] · γ[k]
, Polak–Ribiere (CG-PR)

(5.14)

The CG-FR formula yields search directions with very favorable convergence properties for
quadratic cost functions, as is explained below. The CG-PR formula gives the same search
direction as CG-FR for quadratic cost functions, but its extra term biases the search direction
towards the direction of steepest descent when the cost function is far from quadratic. As
steepest descent is more robust in this case, CG-PR is preferred.

A gradient minimizer routine

gradient minimizer.m implements either the CG-PR method as the default or the steepest
descent method. It uses a weak line search starting from an initial step based on quadratic
approximation. Thus, when the cost function is (locally) quadratic, a strong line search is
conducted. The syntax is

[x, F, grad, iflag, x traj] = gradient minimizer(. . .
func name, x0, OptParam, ModelParam);

func name is the name of a routine that returns F(x) and γ(x),

function [F, grad, iOK] = func name(x, ModelParam);

Here, iOK is 1 if the cost function was evaluated correctly.
ModelParam is a structure that contains the fixed parameters of the cost function. x0 is

the initial guess, and OptParam is an optional structure that controls the behavior of the
minimizer. As output, x is the local minimum, F and grad are its cost function and gradient,
iflag is 1 if the minimizer converged. x traj is an optional array recording the progress of
the minimizer.

The steepest descent and gradient methods are demonstrated in Figure 5.6 and Figure 5.7
for the cost function

F(x) = (x1 − 1)2 + 10(x2 − 2)2 + c(x1 − 1)4 + c(x2 − 2)4 (5.15)

The following routine returns the cost function and its gradient:

function [F, grad, iOK] = simple cost func(x, ModelParam);
iOK = 0; c = ModelParam.c;
dx1 = x(1) - 1; dx2 = x(2) - 2;

Gradient methods 219

1

−
− 1

initia ess iter = 2

2

1

1

−
− 1

2

1

1

−
− 1

2

1

initia ess iter = 2

1

−
− 1

initia ess − iter = 11

2

1

initia ess − iter = 2

Figure 5.6 Gradient minimizers applied to a quadratic cost function. Results at left from steepest
descent method and those at right from conjugate gradient method.

grad = zeros(size(x));
F = dx1 ˆ2 + 10*dx2 ˆ2 + c*(dx1 ˆ4) + c*(dx2 ˆ4);
grad(1) = 2*dx1 + 4*c*dx1 ˆ3; grad(2) = 2*10*dx2 + 4*c*dx2 ˆ3;
iOK = 1;
return;

For the quadratic case (c = 0) with the default (CG-PR) method, the minimization is per-
formed by

ModelParam.c = 0;
x0 = [5; 0];
[x, F, grad, iflag, x traj] = gradient minimizer(‘simple cost func’, . . .

x0, [], ModelParam);

To use the steepest descent method, we type

OptParam.method = 0;
[x, F, grad, iflag, x traj] = gradient minimizer(‘simple cost func’, . . .

x0, OptParam, ModelParam);

220 5 Numerical optimization

1

−
− 1

initia ess iter =

2

1

1

−
− 1

initia ess iter = 1

2

1

1

−
− 1

initia ess iter = 2

2

1

1

−
− 1

initia ess iter =

2

1

Figure 5.7 Gradient minimizers applied to a nonquadratic cost function. Steepest descent (left) and
conjugate gradient (right) with c = 0.1 (upper) and c = 1 (lower).

Figure 5.6 compares the conjugate gradient and steepest descent methods for the quadratic
case, c = 0. While the steepest descent method generates a zig-zag trajectory, the conjugate
gradient method avoids this and reaches the minimum after only two iterations (we note that
2 is also the dimension of x). Figure 5.7 compares the two methods with nonzero quartic
terms. The conjugate gradient method is no longer able to find the minimum after only two
iterations, yet it is still more efficient than the steepest descent method.

Conjugate gradient method applied to quadratic cost functions

We now consider the origin of the excellent performance of the conjugate gradient method
for a quadratic cost function, defined in terms of a symmetric, positive-definite matrix A
and a vector b,

F(x) = 1

2
xT Ax − bTx γ(x) = Ax − b (5.16)

As the cost function is minimized when Ax = b, this method is often used to solve linear
systems when elimination methods are too costly (more on this subject in Chapter 6). Let

Gradient methods 221

p

x

γ 1

x 1

Figure 5.8 At the minimum along the line, the local gradient is perpendicular to the search direction.

the current estimate be x[k]. We perform a line search in the direction p[k], and as F(x)
is quadratic, we can compute analytically the line minimum a[k] where the gradient is
perpendicular to the search direction (Figure 5.8),

p[k] · γ(x[k] + a[k] p[k]
) = p[k] · {A

(
x[k] + a[k] p[k]

)− b
} = 0 (5.17)

Using γ[k] = Ax[k] − b, this yields the update

x[k+1] = x[k] + a[k] p[k] a[k] = − p[k] · γ[k]

p[k] · A p[k]
(5.18)

We next select a new search direction p[k+1] to identify the next estimate

x[k+2] = x[k+1] + a[k+1] p[k+1] (5.19)

How should we choose the new search direction p[k+1] ? We see from Figure 5.8 that we
have already minimized the cost function in the direction p[k]. It would be nice if, when
we do the subsequent line searches in the directions p[k+1], p[k+2], . . . , we do nothing to
“mess up” the fact that we have found an optimal coordinate in the direction p[k]. If so, and
if the set of search directions is linearly independent, then after at most N iterations, we are
guaranteed to have found the exact position of the minimum, in the absence of round-off
error.

We thus choose p[k+1] such that x[k+2] remains optimal in the direction p[k],

d

dα
F
(
x[k+2] + α p[k]

)∣∣
α=0

= p[k] · γ(x[k+2]
) = 0 (5.20)

Writing γ[k+2] = Ax[k+2] − b and using (5.19), we have

p[k] · {Ax[k+2] − b
} = p[k] · {[Ax[k+1] − b

]+ a[k+1] A p[k+1]
} = 0

p[k] · γ[k+1] + a[k+1]
(

p[k] · A p[k+1]
) = 0 (5.21)

As we have already established that p[k] · γ[k+1] = 0, if we choose the new search direction

222 5 Numerical optimization

to be A-conjugate to the old one,

p[k] · A p[k+1] = 0 (5.22)

then p[k] · γ(x[k+2]) = 0, and performing a line minimization along p[k+1] will do nothing
to alter the fact that we have found the optimal coordinate in the direction p[k]. The N vectors
p[1], p[2], . . . , p[N] generated by this method are linearly independent. As after N iterations
we will have found the correct coordinates of the minimum in each of these directions, we
are guaranteed to have found the exact position of the minimum. Thus, in the absence of
round-off error, the conjugate gradient algorithm terminates after at most N iterations. Note
that this method is somewhat misnamed, as by (5.22) it is the search directions {p[k]} that
are conjugate, not the gradients {γ[k]}, which in fact may be shown to be orthogonal.

To implement the A-conjugacy condition, p[k] · A p[k+1] = 0, we write the new search
direction as the linear combination

p[k+1] = −γ[k+1] + β [k] p[k] (5.23)

Multiplying by A and enforcing A-conjugacy yields

p[k] · A p[k+1] = 0 = −p[k] · Aγ[k+1] + β [k] p[k] · A p[k]

β [k] = γ[k+1] · A p[k]

p[k] · A p[k]
= γ[k+1] · γ[k+1]

γ[k] · γ[k]
(5.24)

The latter form for β[k] is obtained from the first through use of conditions that follow
from A-conjugacy. If this formula for β [k] is applied to a nonquadratic cost function,
the CG-FR method is obtained. Because the relations above assume the cost function to
be quadratic, the CG-FR method is not guaranteed to terminate in N iterations; however, once
the algorithm is close enough to the minimum for quadratic approximation to be accurate,
the self-terminating aspects of the conjugate gradient method become useful. The CG-FR
and CG-PR formulas agree for a quadratic cost function (as γ[k] · γ[k+1] = 0). Whenever
the cost function is far from quadratic, the orthogonality of the gradients will be lost, and
the additional term in the CG-PR formula pushes the search direction towards the steepest
descent direction. This usually improves the performance, and the CG-PR method is the
recommended choice of gradient method.

The conjugate gradient algorithm to minimize F(x) = 1
2 xT Ax − bTx, solving Ax = b,

is

make initial guess x[0]; set initial gradient, γ[0] = Ax[0] − b
set initial search direction, p[0] = −g[0]

for k = 0, 1, . . . , (1+ ε)N , where ε ≥ 0 allows for round-off error
if ‖γ[k]‖ ≤ δtol, STOP and ACCEPT x[k] as solution
perform line search.

y[k] = A p[k], a[k] = −(
p[k] · γ[k]

)/(
p[k] · y[k]

)
x[k+1] = x[k] + a[k] p[k]

compute new gradient, γ[k+1] = γ[k] + a[k] y[k]

Newton line search methods 223

get new search direction, β [k] = (
γ[k+1] · γ[k+1]

)/(
γ[k] · γ[k]

)
,

p[k+1] = −γ[k+1] + β [k] p[k]

end for k = 0, 1, . . . (1+ ε)N

An alternative expression for the step length, equivalent to (5.18), is

a[k] = (
γ[k] · γ[k]

)/(
p[k] · y[k]

)
(5.25)

In MATLAB this algorithm is used by pcg (more on this routine in Chapter 6). Note that
at each CG iteration, we only need to multiply the current solution estimate by A, a quick
procedure when A is sparse. Note also, that as no fill-in occurs, this method is well suited
to large, sparse systems.

Newton line search methods

The gradient vector provides information about the local slope of the cost function surface.
Further improvement in efficiency is gained by using knowledge of the local curvature of
the surface, as encoded in the real, symmetric Hessian matrix, with the elements

Hjk = ∂γk

∂x j
= ∂2 F

∂x j∂xk
= ∂2 F

∂xk∂x j
= Hkj (5.26)

Again, we use an iterative method with a line search direction p[k],

x[k+1] = x[k] + a[k] p[k] (5.27)

We use the Hessian to make better selections of the search directions and step lengths. For
small p, Taylor expansion of the gradient yields

γ
(
x[k] + p

)− γ
(
x[k]

) ≈ H
(
x[k]

)
p + O[|p|2] (5.28)

As γ(xmin) = 0, we set γ(x[k] + p) = 0 to yield a linear system for p[k]:

H
(
x[k]

)
p[k] = −γ(x[k]

)
(5.29)

This appears to be equivalent to solving γ(x) = 0 by Newton’s method, but there is an
important difference. Newton’s method just looks for a point where the gradient is zero,
but we specifically want to find a minimum of F(x). Yet, the gradient is zero at maxima
and at saddle points as well. Thus, we must ensure that p[k] · γ[k] < 0, so that we can use a
backtrack line search, starting from a[k] = 1, to enforce

F
(
x[k+1]

) = F
(
x[k] + a[k] p[k]

)
< F

(
x[k]

)
(5.30)

How can we be assured that the search direction generated by (5.29) is indeed a descent
direction?

224 5 Numerical optimization

To make things general, let us use not the exact Hessian, but some real-symmetric
approximation to it:

B[k] ≈ H
(
x[k]

) (
B[k]

)T = B[k] (5.31)

The search direction is obtained by solving

B[k] p[k] = −γ[k] (5.32)

For small a[k], we approximate the change in F(x) as

F
(
x[k] + a[k] p[k]

)− F
(
x[k]

) ≈ a[k]
(

p[k] · γ[k]
)+ O

[(
a[k]

)2]
(5.33)

But, from our update rule γ[k] = −B[k] p[k]; therefore,

F
(
x[k] + a[k] p[k]

)− F
(
x[k]

) ≈ −a[k]
(

p[k] · B[k] p[k]
)+ O

[(
a[k]

)2]
(5.34)

We first try a[k] = 1, and iteratively halve its value until we find that the descent criteria
are satisfied. Thus, a[k] eventually will be small enough for (5.34) to be valid, so that F(x)
will reduced if p[k] · B[k] p[k] > 0, i.e., if B[k] is positive-definite (all of its eigenvalues are
positive).

Let xmin be a local minimum such that no neighboring points have a lower cost function.
Then, as for very small p,

F(xmin + p)− F(xmin) ≈ 1

2
pT H (xmin)p + O[|p|2] ⇒ pT H (xmin)p ≥ 0 (5.35)

It is possible for H (xmin) to have one or more zero eigenvalues and for xmin still to be
a local minimum, but there can be no negative eigenvalues. Thus, at (and very nearby) a
minimum, the Hessian is at least positive-semidefinite. Away from the near vicinity of a
local minimum, however, it is quite possible for the Hessian to have negative eigenvalues,
so that the search direction generated by H (x[k])p[k] = −γ(x[k]) is not a descent direction.

It is not necessary, however, that we use the exact Hessian when computing p[k]. As
γ(xmin) = 0, B[k] p[k] = −γ(xmin) has for any nonsingular B[k] the unique solution p[k] = 0,
so that x[k+1] = xmin. We can get the same eventual solution even if B[k] �= H [k]. Thus, if
B[k] is (nearly) singular, we could add a value τ > 0 to each diagonal element, such that
by Gershgorin’s theorem (B[k] + τ I) is positive-definite. Then, we solve (B[k] + τ I)p[k] =
−γ[k] to generate a search direction that is guaranteed to point downhill.

Often we construct B[k] from past gradient evaluations. As the Hessian is the Jacobian
of the gradient, we generate B[k+1] from B[k] so that it satisfies the secant condition

B[k+1] �x = �γ �x = x[k+1] − x[k] �γ = γ[k+1] − γ[k] (5.36)

or, a corresponding condition for the Hessian inverse(
B[k+1]

)−1
�γ = �x (5.37)

The smallest update consistent with (5.37) is achieved by the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) formula, which ensures that if B[0] is positive-definite (e.g., B[0] = I), so

Trust-region Newton method 225

is B[1], B[2], . . .,

B[k+1] = B[k] + �γ(�γ)T

(�γ)T �x
− B[k] �x(�x)T B[k]

(�x)T B[k] �x
(5.38)

Equivalent update formulas exist for the approximate Hessian inverse or Cholesky factor,
which are more commonly used in practice than (5.38). For further details of such quasi-
Newton methods consult Nocedal & Wright (1999).

Trust-region Newton method

Newton line search algorithms perform badly when B[k] is nearly singular, as the search
directions become erratic. The trust-region Newton method, in which step length and search
direction are chosen concurrently, is more robust in this case. For small p, the cost function
may be approximated in the vicinity of x[k] by a quadratic model function

F
(
x[k] + p

) ≈ F
(
x[k]

)+ γ[k] · p + 1

2
p · B[k] p ≡ m[k](p) (5.39)

We assume that m[k](p) agrees well with F(x) within a trust region |p| < �[k]. The trust
radius �[k] is modified from one iteration to the next based on the observed level of dis-
agreement between the true and model cost functions. We obtain �x[k] by finding (at least
approximately) a minimum, within the trust region, of the model function m[k](p).

The advantage of the trust-region method is that even if B[k] is nearly singular, m[k](p)
still has a useful minimum within the trust region. As long as F(x) is reduced, x[k+1] =
x[k] +�x[k] is accepted, else the old value is recycled and the trust radius is reduced. If the
agreement between F(x[k+1])− F(x[k]) and m[k](�x[k])− m[k](0) is good (poor), the trust
radius is increased (decreased) for the next iteration.

The dogleg method

The dogleg method solves the trust-region subproblem approximately, assuming that B[k]

is positive-definite, although perhaps nearly singular. We say that this method solves the
problem approximately, because we do not bother to find the true minimum, but merely an
easily-found point within the trust region that lowers m[k](p) more than the steepest descent
method does.

The dogleg method is based upon an analysis of how the trust-region minimum changes
as a function of the trust radius �[k]. When �[k] is very large, we have effectively an
unconstrained problem and the trust-region minimum is the full Newton step p(n), the
global minimum of m[k](p),

B[k] p(n) = −γ[k] (5.40)

On the other hand, when�[k] is very small, the curvature of m[k](p) may be neglected, and
the minimum is found by moving in the steepest descent direction as far as is allowed,

p(d) = −�[k] γ[k]
/∣∣γ[k]

∣∣ (5.41)

226 5 Numerical optimization

0

∆

p c pd

pnp s

s =
s = 1

s 2

a r i n
r d e
e t d p sc

Figure 5.9 The trust-region Newton dogleg method finds the position on the two connected line
segments that minimizes the model function while lying within the trust region.

When B[k] is positive-definite, the local model function value is greater than that predicted
by neglecting the curvature. Thus, the actual minimum of m[k](p) along the line connecting
the origin and p(d) is found at some intermediate point p(c), the Cauchy point,

p(c) = α p(d) 0 ≤ α ≤ 1 (5.42)

where

0 = d

dα
m[k]

(
α p(d)

) = d

dα

{
F
(
x[k]

)+ αγ[k] · p(d) + α2

2
p(d) · B[k] p(d)

}
(5.43)

such that

α = −[
γ[k] · p(d)

]/[
p(d) · B[k] p(d)

]
(5.44)

For any intermediate�[k], we first compute the full Newton step. As p(n) is a global minimum
for m[k](p), if it lies within the trust region, |p(n)| ≤ �[k], we accept it as the update,
�x[k] = p(n). Otherwise, we must approximate the minimum, accounting for the constraint,
as follows.

We form the “dogleg” curve p(s) from the connected line segments running from 0 to
p(c) and from p(c) to p(n) (Figure 5.9),

p(s) =
{

s p(c), if 0 ≤ s ≤ 1
p(c) + (s − 1)

(
p(n) − p(c)

)
, if 1 ≤ s ≤ 2

(5.45)

The constrained minimum lies along this curve when �[k] is very large or very small,
and thus for intermediate �[k] it poses a convenient 1-D restricted problem that is quickly
solved,

minimize m[k](p(s)) subject to|p(s)| ≤ �[k] (5.46)

It may be shown that along this curve, |p(s)| increases monotonically and m[k](p(s))

Newton methods for large problems 227

decreases monotonically,

d

ds
|p(s)|2 > 0

d

ds
m[k] (p(s)) < 0 (5.47)

As we are considering the case where p(n) lies outside of the trust region and p(d) lies within
it, the minimum along the curve occurs at 1 ≤ sc ≤ 2 where p(s) crosses the trust region
boundary,

|p(sc)|2 = ∣∣p(c) + (sc − 1)
(

p(n) − p(c)
)∣∣2 = (

�[k]
)2

(5.48)

In this case, the accepted new estimate is

x[k+1] = x[k] +�x[k] �x[k] = p(sc) = p(c) + (sc − 1)
(

p(n) − p(c)
)

(5.49)

The dogleg method allows us to identify quickly a point within the trust region that lowers
the model cost function at least as much as the Cauchy point. The advantage over the
Newton line search procedure is that the full Newton step is not automatically accepted as
the search direction, avoiding the problems inherent in its erratic size and direction when
B[k] is nearly singular. Further methods to find approximate trust-region minimums are
discussed in Nocedal & Wright (1999).

Newton methods for large problems

In the line search and trust-region Newton methods, we must obtain the full Newton step
p(n) by solving a linear system at each Newton iteration,

B[k] p(n) = −γ[k] B[k] ≈ H
(
x[k]

)
B[k] > 0 (5.50)

As B[k] is real-symmetric/positive-definite, the conjugate gradient method can be used. As
discussed in Chapter 1, fill-in during elimination for large, sparse systems yields very long
computation times and massive memory requirements; however, in the conjugate gradient
method, no elimination is necessary (see algorithm above). We only need to compute at
each conjugate gradient iteration the product of B[k] with the current estimate of p(n). When
B[k] is sparse, this product is fast to compute and we only need to store the nonzero elements
of B[k].

BFGS can be applied to large problems when the Hessian is sparse if the update formula
(5.38) is provided with the sparsity pattern so that only the nonzero positions are stored
and updated. Alternatively, only the most recent gradient vectors may be retained and used
in (5.38). Both approaches allow the construction of approximate Hessians with limited
memory usage. For a more detailed discussion of memory-efficient BFGS methods, consult
Nocedal & Wright (1999).

The need in Newton’s method to store B[k] and to solve a linear system (5.50) at each
iteration poses a significant challenge for large optimization problems. For large problems
with Hessians that are dense or whose sparsity patterns are unknown, the tricks above
cannot be used. Instead, the nonlinear conjugate gradient method, which does not require
any curvature knowledge, is recommended.

228 5 Numerical optimization

Unconstrained minimizer fminunc in MATLAB

The routine fminunc, part of the optional MATLAB optimization toolkit, uses either a
gradient or a Newton algorithm to solve an unconstrained, continuous optimization problem,
with the choice of method depending upon the size of the problem and upon the level of
information about the gradient and Hessian provided by the user. It is called with the syntax

[x, F, exitflag, output] = fminunc (fun, x0, OPTIONS, P1, P2, . . .);

fun is the name of a routine that returns the cost function value,

function F = fun(x, P1, P2, . . .);

x0 is the initial guess, and P1, P2, . . . are optional parameters to be passed through fminunc
to fun. OPTIONS is set by optimset. If fun supplies the value of the gradient as well, use

OPTIONS = optimset(‘GradObj’, ‘on’);

and give fun the syntax,

function [F, grad] = fun(x, P1, P2, . . .);

If in addition, you supply the Hessian matrix, add to OPTIONS,

OPTIONS = optimset(OPTIONS, ‘Hessian’, ‘on’);

and write fun as

function [F, grad, Hessian] = fun(x, P1, P2, . . .);

The output arguments include the local minimum x and its cost function value F.
For large problems, fminunc can be informed of the sparsity pattern of the Hessian

through the ‘HessPattern’ field. Instead of supplying the Hessian itself, one can merely pass
the name of a routine that computes the product of an input vector with the Hessian through
the ‘HessMult’ field. fminunc can be told explicitly to use algorithms effective for large
problems by setting the ‘LargeScale’ field to ‘on’. The ‘Display’ field controls the level of
detail printed to the screen about the progress of the minimization and ‘Diagnostics’ can be
set to ‘on’ to gain further information about the optimizer performance.

Example. A simple cost function

We demonstrate fminunc for the simple cost function (5.15) used to compare the per-
formance of the steepest descent and conjugate gradient methods. The routine sim-
ple cost func.m that returns the value of this cost function was presented previously fol-
lowing (5.15). The code below uses fminunc to find the minimum at (1, 2),

x0 = [5;0];
ModelParam.c = 1;
[x,F] = fminunc (@simple cost func, x0, [], ModelParam),
Warning: Gradient must be provided for trust-region method;

using line-search method instead.
> In fminunc at 241

Unconstrained minimizer fminunc in MATLAB 229

Optimization terminated: relative infinity-norm of gradient less than
options.TolFun.

x = 1; 2
F = 0

To let fminunc know that the routine returns the gradient vector, use the ‘GradObj’ field of
optimset,

Options = optimset(‘GradObj’, ‘on’);
[x,F] = fminunc (@simple cost func, x0, Options, ModelParam),
Optimization terminated: first-order optimality less than

OPTIONS. TolFun, and no negative/zero curvature detected in
trust region model.

x = 1; 2
F = 0

To suppress the printing of messages on the screen, use the ‘Display’ field,

Options = optimset(Options, ‘Display’,‘off’);
[x,F] = fminunc (@simple cost func, x0, Options, ModelParam),

x = 1; 2
F = 0

For this problem, the steepest descent method required 58 iterations and the conjugate
gradient method 29. From the additional output arguments,

[x,F,exitflag,output] = fminunc (@simple cost func, . . .
x0, Options, ModelParam),

x = 1; 2
F = 0
exitflag = 1
output =

iterations: 4
funcCount: 5

cgiterations: 4
firstorderopt: 0

algorithm: ‘large-scale: trust-region Newton’
message: [1x137 char]

we see that fminunc was quite efficient at finding the minimum. To avoid using a large-scale
algorithm on this small problem, type

Options = optimset(Options,‘LargeScale’,‘off’);
[x,F,exitflag,output] = fminunc (@simple cost func, x0, Options, ModelParam),
x = 1; 2
F = 0
exitflag = 1
output =

230 5 Numerical optimization

iterations: 1
funcCount: 2
stepsize: 0.0417

firstorderopt: 0
algorithm: ‘medium-scale: Quasi-Newton line search’

message: [1x85 char]

Example. Fitting a kinetic rate law to time-dependent data

There need not always be an analytical expression for the cost function. Often, the cost
function itself is computed by a numerical calculation. For example, let us say that we are
studying the enzymatic conversion of a substrate S to a product P in a batch bioreactor.
We expect the rate of conversion, in units of micromoles converted per minute per mil-
ligram of enzyme, to be described by Michaelis–Menten kinetics, with possibly substrate
inhibition,

−r̂s = Vm[S]

Km + [S]+ K−1
si [S]2

(5.51)

For a bioreactor of volume VR, the number of micromoles of substrate, NS, is related to the
substrate molar concentration [S] by

Ns = αc VR[S] (5.52)

αc is 106 µmol/mol. Thus, the mole balance on the substrate in a bioreactor containing
mE mg of enzyme is

d[S]

dt
=

(
mE

αc VR

)
r̂s = −

(
mE

αc VR

)[
Vm[S]

Km + [S]+ K−1
si [S]2

]
(5.53)

For a reactor of volume 100 ml containing 10 mg of enzyme, Table 5.1 records the substrate
concentration as a function of time, starting from an initial concentration of 2 M. We wish
to fit θ = [Vm Km Ksi]T by minimizing the cost function

Fc(θ) = 1
2

∑Nd
k=1[Spred(tk ;θ)− Sobs(tk)]2 (5.54)

At each time tk , Sobs is the observed [S], and Spred is the predicted value from (5.53). Here,
there is no analytical expression for the cost function, as we must solve the initial value
problem for [S] as a function of time numerically. fit enzyme batch sim1.m uses ode45 to
simulate the batch kinetics for input values of the rate law parameters in order to evaluate the
cost function. Either fminsearch or fminunc is used to perform the optimization. Here, we
rely upon the optimizer to estimate the gradient through finite difference approximations.
The agreement between the fitted equation and the data is shown in Figure 5.10.

Lagrangian methods for constrained optimization 231

Table 5.1 Measured substrate
concentration (in M) in batch
enzymatic reactor

time (min) [S] (M)

30 1.87
60 1.73
90 1.58

120 1.43
180 1.07
240 0.63
300 0.12
315 0.04
330 0.01

2

1

1

1

12

1

2

1 1 2

tie in

2

Figure 5.10 Measured substrate concentrations vs. time and predictions from fitted rate law with
Vm = 200 µmol/(min/mgE), Km = 0.201 M, and Ksi = 0.5616 M.

Lagrangian methods for constrained optimization

In the preceding sections, we considered only unconstrained optimization problems in which
x may take any value. Here, we extend these methods to constrained minimization problems,
where to be acceptable (or feasible), x must satisfy a number ne of equality constraints
gi (x) = 0 and a number ni of inequality constraints h j (x) ≥ 0, where each gi (x) and h j (x)
are assumed to be differentiable nonlinear functions. This constrained optimization problem

232 5 Numerical optimization

is expressed mathematically as

minimize F(x)

subject to
gi (x) = 0 i = 1, 2, . . . , ne

h j (x) ≥ 0 j = 1, 2, . . . , ni
(5.55)

One approach to solve (5.55), the penalty method, is to add to F(x) penalty terms that push
x away from regions in which constraints are violated,

Fµ(x) = F(x)+ 1

2µ

{
ne∑

i=1

[gi (x)]2 +
ni∑

j=1

H (−h j (x))[h j (x)]2

}
(5.56)

The Heaviside step function H (x) is

H (x) =
{

1, x ≥ 0
0, x < 0

(5.57)

The problem with this approach is that to enforce the constraints exactly, we must take the
limit µ → 0. But as this limit is approached, the penalty terms come to dominate the actual
cost function of interest, and so the numerical minimization of Fµ(x) in this limit is difficult.

Here we consider the augmented Lagrangian method, which converts the constrained
problem into a sequence of unconstrained minimizations. We first treat equality constraints,
and then extend the method to include inequality constraints.

Optimization with equality constraints

For simplicity, we first restrict our discussion to the case where we have only equality
constraints,

minimize F(x)
subject to gi (x) = 0 i = 1, 2, . . . , ne (5.58)

To make things even simpler, we consider at first only a single constraint,

minimize F(x)
subject to g(x) = 0 (5.59)

For an unconstrained problem, a necessary condition for xmin to be a minimum is that the
local gradient be zero,

∇F |xmin = 0 (5.60)

What is the similar necessary condition for a point to be a constrained minimum in the
presence of an equality constraint?

Let xmin be a constrained minimum. Then, the curve g(x) = 0 and the contours of F(x)
will look something like Figure 5.11. If xmin is a constrained minimum, we cannot move in
either direction along the curve g(x) = 0 and decrease the cost function.

If t is a tangent vector to the curve at xmin, a first-order Taylor approximation in the
tangent direction gives

F(xmin + εt)− F(xmin) = ε∇F |xmin · t (5.61)

Thus, at a constrained minimum, ∇F must be perpendicular to any tangent direction of the

Lagrangian methods for constrained optimization 233

x

V λV

v V v

cnstrained
ini

∆

∆ ∆

Figure 5.11 First-order optimality conditions for a constrained minimum of F(x) along g(x) = 0.

constraint curve g(x) = 0,

∇F |xmin · t = 0 (5.62)

If we use a similar Taylor approximation for g(x), we obtain

g(xmin + εt)− g(xmin) = ε∇g|xmin · t (5.63)

As in the limit ε → 0, both g(xmin + εt) and g(xmin) lie along g(x) = 0,

∇g|xmin · t = 0 (5.64)

At the constrained minimum, both ∇F and ∇g are perpendicular to any tangent vector of
the curve. Does that mean that ∇F and ∇g are parallel?

We can always write (through orthogonal projection) any vector p as p = λ∇g + v, the
sum of a vector parallel to ∇g and a vector v that is perpendicular to ∇g. Applying this to
∇F ,

∇F |xmin = λ∇g|xmin + v ∇g · v = 0 (5.65)

After a move εv, the changes in F(x) and g(x) are

F(xmin + εv)− F(xmin) = ε∇F |xmin · v
g(xmin + εv)− g(xmin) = ε∇g|xmin · v = 0 (5.66)

If there is indeed some v �= 0 contributing to ∇F , we can decrease F(x) by moving in the
direction of ±v and still satisfy g(x) = 0, as then

F(xmin + εv)− F(xmin) = ε[λ∇g|xmin + v] · v = ε(v · v) (5.67)

Thus, at a constrained minimum, ∇F must be parallel to ∇g,

∇F |xmin = λ∇g|xmin (5.68)

This yields our generalization of the condition ∇F = 0 to accommodate an equality con-
straint. Rather than finding a flat point in the cost function, we search for a flat point of the

234 5 Numerical optimization

Lagrangian

L(x; λ) ≡ F(x)− λg(x) (5.69)

where at the constrained minimum,

∇L|xmin = ∇F |xmin − λ∇g|xmin = 0 (5.70)

λ is known as a Lagrange multiplier, and its value must be chosen so that at the minimum
of the Lagrangian, g(x) = 0.

The Lagrangian gives us a powerful technique to convert a constrained optimization
problem into a familiar unconstrained one, but there remains the problem of computing the
Lagrange multiplier used to define L(x; λ). In the augmented Lagrangian method, we add
a quadratic penalty to the Lagrangian that serves to enforce g(x) = 0 whenever we use the
incorrect value of λ. Starting with an initial guess λ[0] of the multiplier, we choose some
µ[0] > 0 and define the augmented Lagrangian

L [0]
A

(
x; λ[0], µ[0]

) ≡ F(x)− λ[0]g(x)+ 1

2µ[0]
[g(x)]2 (5.71)

We then find a point x[0] minimizing L [0]
A , where

∇L [0]
A

∣∣
x[0] = 0 = ∇F |x[0] −

[
λ[0] − g

(
x[0]

)
µ[0]

]
∇g|x[0] (5.72)

This yields the following update of the Lagrange multiplier estimate

λ[1] = λ[0] − g
(
x[0]

)
µ[0]

(5.73)

With this updated multiplier, we define a new augmented Lagrangian and optionally make
the penalty stronger, 0 < µ[1] ≤ µ[0]. We take x[0] as the initial guess in a minimization of
the new Lagrangian

L [1]
A

(
x; λ[1], µ[1]

) ≡ F(x)− λ[1]g(x)+ 1

2µ[1]
[g(x)]2 (5.74)

We iterate this process until convergence to the proper multiplier value is reached; i.e.,
until at the unconstrained minimum of the augmented Lagrangian, the equality constraint
is satisfied.

How do we treat multiple equality constraints? If xmin satisfies all constraints, gi (xmin) =
0, i = 1, . . . , ne, then we can only move away from xmin in a direction v that is tangent to
all constraints,

∇gi |xmin · v = 0 ∀i = 1, 2, . . . , ne (5.75)

If xmin is a constrained minimum, we cannot decrease the cost function by moving in any
such tangent direction, so that for any v satisfying (5.75),

∇F |xmin
· v = 0 (5.76)

We can always write ∇F |xmin as a linear combination of the ∇gi |xmin plus some tangent
vector v satisfying (5.75),

∇F |xmin =
ne∑

i=1

λi∇gi |xmin + v (5.77)

Lagrangian methods for constrained optimization 235

Taking the dot product with v, at a constrained minimum (5.76) requires that v = 0; hence,

∇F |xmin =
ne∑

i=1

λi ∇gi |xmin
(5.78)

For multiple equality constraints we thus define the Lagrangian as

L(x;λ) = F(x)−
ne∑

i=1

λi gi (x) (5.79)

and use the same technique as before. Note that the existence of a constrained minimum is
not guaranteed, for there may exist no points that satisfy all constraints simultaneously.

Example. Finding the closest points on two ellipses

We consider here a simple example in which we wish to find the points on two ellipses that
are nearest to each other. Let (x1, y1) and (x2, y2) be the coordinates of the points on the
first and second ellipses, centered at (xc1, yc1) = (0, 0) and (xc2, yc2) = (5, 5) respectively.
For (x1, y1) and (x2, y2) to lie on the ellipses, they must satisfy the two equality constraints

a1(x1 − xc1)2 + b1(y1 − yc1)2 = 1 a1 = 0.5 b1 = 0.3
a2(x2 − xc2)2 + b2(y2 − yc2)2 = 1 a2 = 0.2 b2 = 0.4 (5.80)

ellipse min.m uses the augmented Lagrangian method to minimize

F(x1, y1, x2, y2) = (x1 − x2)2 + (y1 − y2)2 (5.81)

subject to (5.80). The initial guesses are the ellipse centers and the Lagrange multipliers are
set initially to zero.

Figure 5.12 shows the trajectories at each multiplier iteration of (x1, y1) (circles)
and (x2, y2) (diamonds), with a line connecting the final optimal points. fminunc is
used to minimize the augmented Lagrangian at each multiplier iteration. In practice, the
MATLAB constrained minimizer fmincon would be preferred; ellipse min.m is meant only
to demonstrate the augmented Lagrangian technique. Both fminunc and fmincon are part
of the optional MATLAB optimization toolkit. If your installation of MATLAB does not
include this toolkit, you must apply the augmented Lagrangian procedure directly, as in
ellipse min.m, and use the provided routine gradient minimizer.m to perform each uncon-
strained minimization. The code for solving this problem with fmincon is presented below,
following our discussion of inequality constraints.

Treatment of inequality constraints

We now consider methods to solve the problem

minimize F(x)
gi (x) = 0 i = 1, 2, . . . , ne

subject to (5.82)
h j (x) ≥ 0 j = 1, 2, . . . , ni

236 5 Numerical optimization

2

1

2

−1

−2
−2

Figure 5.12 Trajectory of multiplier iterations when finding the closest points on two ellipses.

easie set

ineasie ineasie

1 x 2 x

1 active

2 active

2 inactive
1 inactive

1 inactive
2 inactive

∇ 1

∇ 2

Figure 5.13 Geometry of a feasible set with two inequality constraints.

It will help to visualize the set of feasible points that contains all points that satisfy the
constraints (Figure 5.13). At any feasible point x, each inequality constraint may be either
active or inactive. It is inactive if h j (x) > 0, as we can move in any direction from x by
at least a small distance without violating the constraint. By contrast, if h j (x) = 0, we can
only move in directions p of nondecreasing hj with ∇h j · p ≥ 0.

What are the conditions that a feasible point x must satisfy to be a constrained minimum?
First, at a constrained minimum xmin, let SA(xmin) be the set of all active inequality
constraints,

j ∈ SA(xmin) if h j (xmin) = 0
j /∈ SA(xmin) if h j (xmin) > 0 (5.83)

Now, we can always write ∇F |xmin as

∇F |xmin =
ne∑

i=1

λi∇gi |xmin +
ni∑
j=1

j∈SA(xmin)

κ j∇h j |xmin + v (5.84)

Lagrangian methods for constrained optimization 237

where v is tangent to all equality constraint curves and all active inequality constraint
curves,

v ·∇gi |xmin = 0 v ·∇h j∈SA |xmin = 0 (5.85)

Thus, we can move a differential distance in v and still satisfy all of the active constraints,

gi (xmin + εv) ≈ gi (xmin)+ εv ·∇gi |xmin = 0

h j∈SA (xmin + εv) ≈ h j∈SA (xmin)+ εv ·∇h j∈SA

∣∣
xmin

= 0 (5.86)

Now, using (5.84) and (5.85), the change in cost function associated with this move is

F(xmin + εv)− F(xmin) ≈ εv ·∇F |xmin = ε|v|2 (5.87)

Thus, to have a constrained minimum, v = 0, so that

∇F |xmin =
ne∑

i=1

λi∇gi |xmin +
ni∑
j=1

j∈SA(xmin)

κ j∇h j |xmin (5.88)

In (5.87) we considered only movement along the active constraint surfaces, but now we
require as well that F(x) cannot decrease whenever we move anywhere into the interior of
the feasible region. That is, we must not be able to decrease F(x) by moving away from
xmin in any direction p that is tangent to each equality constraint curve and that points in a
direction where each active h j (x) is nondecreasing,

p ·∇gi |xmin = 0 p ·∇h j∈SA

∣∣
xmin

≥ 0 (5.89)

The change in F(x) during the move xmin → xmin + εp must be nonnegative,

0 ≤ F(xmin + εp)− F(xmin)

ε
≈ p ·∇F |xmin (5.90)

Substituting from (5.88),

F(xmin + εp)− F(xmin)

ε
= p ·

 ne∑

i=1

λi ∇gi |xmin
+

ni∑
j=1

j∈SA(xmin)

κ j ∇h j

∣∣
xmin

 (5.91)

As p ·∇gi |xmin = 0, only the second term in the square bracket contributes,

0 ≤ F(xmin + εp)− F(xmin)

ε
=

ni∑
j=1

j∈SA(xmin)

κ j

(
p ·∇h j |xmin

)
(5.92)

Let us now write

p =
ni∑

m=1
m∈SA(xmin)

cm∇hm |xmin + u u ·∇hm∈SA |xmin = 0 (5.93)

238 5 Numerical optimization

Then, (5.92) becomes

0 ≤
ni∑
j=1

j∈SA(xmin)

κ j

ni∑
m=1

m∈SA(xmin)

cm(∇hm |xmin ·∇h j |xmin) (5.94)

Defining the real-symmetric matrix � with elements

�mj = ∇hm |xmin ·∇h j |xmin = � jm (5.95)

the requirement (5.90) becomes

0 ≤ κ(A) · (�c) κ(A) = [κ j∈SA] c = [cm∈SA] (5.96)

If the active inequality constraint gradients are linearly independent, � is positive-definite.
Now, by moving in the direction p, each active inequality constraint function must also be
nondecreasing,

0 ≤ h j∈SA (xmin + εp)− h j∈SA (xmin)

ε
= p ·∇h j∈SA |xmin

=
ni∑

m=1
m∈SA(xmin)

cm� jm = (�c) j (5.97)

Thus, for the active inequality constraint functions to be nondecreasing we must have
(�c) j ≥ 0, and (5.96) then requires that for the cost function to be also nondecreasing in
this direction, each active inequality constraint multiplier must be nonnegative,

κ j∈SA ≥ 0 (5.98)

What about the multipliers for the inactive inequality constraints?
Let us rewrite (5.88) as

∇F |xmin =
ne∑

i=1

λi∇gi |xmin +
ni∑

j=1

κ j∇h j |xmin (5.99)

where κ j /∈SA = 0 for the inactive constraints with h j (xmin) > 0 and κ j∈SA ≥ 0 for the active
constraints with h j (xmin) = 0. We avoid treating the inactive and active constraints sepa-
rately if we require all constraints to satisfy

κ j ≥ 0 κ j h j = 0 (5.100)

The latter of these is known as the complementarity condition, and requires that whenever
a constraint is inactive with h j > 0, its Lagrange multiplier is zero, so that it does not
influence the local search for a minimum.

Combining these results, we identify the first-order optimality conditions that are satisfied
at a constrained minimum xmin, known as the Karush–Kuhn–Tucker (KKT) conditions. We
define the Lagrangian as

L(x;λ, κ) = F(x)−
ne∑

i=1

λi gi (x)−
ni∑

j=1

κ j h j (x) (5.101)

Lagrangian methods for constrained optimization 239

A constrained minimum xmin must satisfy

∇L|xmin = 0
gi (xmin) = 0 i = 1, 2, . . . , ne

h j (xmin) ≥ 0 j = 1, 2, . . . , ni

κ j ≥ 0 j = 1, 2, . . . , ni

κ j h j (xmin) = 0 j = 1, 2, . . . , ni

(5.102)

To find xmin, we again use the augmented Lagrangian method, writing each inequality
constraint h j (x) ≥ 0 in an equivalent form similar to an equality constraint by introducing
a slack variable sj,

h j (x)− s j = 0 s j ≥ 0 (5.103)

The advantage of this transformation is that the inequality is applied now to a “bare” variable
sj, rather than to a function h j (x).

Again, we make initial guesses of the multipliers, define a Lagrangian augmented with
penalty functions that enforce the constraints, find the unconstrained minimum of this
function, and use the results to update the multiplier estimates. At iteration k, the multiplier
estimatesλ[k] andκ[k] and the penalty tolerance µ[k] > 0 define the augmented Lagrangian

L [k]
A

(
x, s;λ[k], κ[k], µ[k]

) ≡ F(x)−
ne∑

i=1

λ
[k]
i gi (x)−

ni∑
j=1

κ
[k]
j [h j (x)− s j]

+ 1

2µ[k]

{
ne∑

i=1

[gi (x)]2 +
ni∑

j=1

[h j (x)− s j]
2

}
(5.104)

We vary x and s to minimize this augmented Lagrangian subject to the conditions s j ≥ 0.

For a specified x, the optimal sj satisfies

0 = ∂L [k]
A

∂s j
= κ

[k]
j + 1

2µ[k]
{2[h j (x)− s j](−1)} (5.105)

Enforcing s j ≥ 0 yields the constrained optimal sj for a particular x:

s j = max
{
h j (x)− µ[k]κ

[k]
j , 0

}
(5.106)

We use (5.106) to remove the slack variables from L [k]
A . At each x, we define INA(x) as the

subset of j ∈ [1, ni] for which h j (x)− µ[k]κ
[k]
j > 0. The complement set IA(x) contains all

other j for which h j (x)− µ[k]κ
[k]
j ≤ 0. Thus,

s j =
{

h j (x)− µ[k]κ
[k]
j , if j ∈ INA(x)

0, if j ∈ IA(x)
(5.107)

As h j (x)− µ[k]κ
[k]
j is the unconstrained optimal sj for x, if j ∈ INA(x), we can attain this

optimal value without violating the condition that s j ≥ 0. s j ≥ 0 is merely a restatement
of h j (x) ≥ 0 when we enforce h j (x)− s j = 0. Thus, if j ∈ INA(x), we can optimize sj

without worrying about h j (x) ≥ 0, and associate INA(x) with the set of inactive constraints
at x. If j ∈ IA(x), we cannot optimize sj without violating h j (x) ≥ 0, and so associate IA(x)
with the set of active constraints at x.

240 5 Numerical optimization

We substitute into (5.104) the constrained optimal sj from (5.107), to obtain a Lagrangian
that is a function solely of x,

L [k]
A

(
x;λ[k], κ[k], µ[k]

) ≡ F(x)−
ne∑

i=1

λ
[k]
i gi (x)

−
∑

j∈INA(x)

µ[k]
(
κ

[k]
j

)2 −
∑

j∈IA(x)

κ
[k]
j h j (x)

+ 1

2µ[k]

{
ne∑

i=1

[gi (x)]2 +
∑

j∈INA(x)

(
µ[k]κ

[k]
j

)2 +
∑

j∈IA(x)

[h j (x)]2

}
(5.108)

We then find a minimum x[k] of L [k]
A where

∇L [k]
A

∣∣
x[k] = 0 (5.109)

Neglecting the variation of INA(x) and IA(x) with x,

∇L [k]
A = ∇F −

ne∑
i=1

[
λ

[k]
i − gi (x)

µ[k]

]
∇gi −

∑
j∈IA(x)

[
κ

[k]
j − h j (x)

µ[k]

]
∇h j (5.110)

This yields the following update rule for the equality constraint multipliers:

λ
[k+1]
i ← λ

[k]
i − gi

(
x[k]

)
µ[k]

(5.111)

For the active inequality constraints, j ∈ IA(x), we have a similar rule but as well must
enforce the KKT condition κ j ≥ 0,

κ
[k+1]
j ← max

{
κ

[k]
j − h j

(
x[k]

)
µ[k]

, 0

}
(5.112)

For the inactive inequality constraints, j ∈ INA(x), we want to set κ
[k+1]
j = 0 to enforce

κ j h j = 0. But since for j ∈ INA(x), h j (x)− µ[k]κ
[k]
j > 0, (5.112) in this case automatically

sets κ
[k+1]
j = 0. Thus, we apply (5.112) to all inequality multipliers, both active and inactive.

With these new estimates of the Lagrange multipliers, we set µ[k+1] ≤ µ[k] to
enforce more strongly the constraints, and define the new augmented Lagrangian
L [k+1]

A (x, s;λ[k+1],κ[k+1], µ[k+1]). This procedure is repeated until the multiplier estimates
converge, at which point we have a local constrained minimum that meets the KKT condi-
tions (5.102).

Sequential quadratic programming (SQP)

The augmented Lagrangian method is not the only approach to solving constrained opti-
mization problems, yet a complete discussion of this subject is beyond the scope of this
text. We briefly consider a popular, and efficient, class of methods, as it is used by fmincon,
sequential quadratic programming (SQP). We will find it useful to introduce a common
notation for the equality and inequality constraints using slack variables,

minimize F(x)
subject to cm(x)− sm = 0 (5.113)
sm∈Se = 0 sm∈Si ≥ 0

Lagrangian methods for constrained optimization 241

Se is the set of equality constraints, cm∈Se (x) = 0 and Si is the set of inequality constraints,
cm∈Si (x) ≥ 0. If µ is the vector of Lagrange multipliers that enforce the constraints, the
constrained minimum satisfies[∇F −∑

m µm∇cm

c(x)− s

]
=

[
0
0

]
(5.114)

Let us examine the Newton update to (5.114) from the current estimates of the constrained
minimum x[k] and the multipliers µ[k],[

(∇2L|x[k]) −(
C [k]

)T

C [k] 0

][
�x[k]

�µ[k]

]
=

[
−∇F |x[k] + (

C [k]
)T
µ[k]

s − c[k]

]
(5.115)

where

C =

−− (∇c1)T −−

...
−− (∇cnc)

T −−

 ∇2L = ∇2 F −�mµm∇2cm (5.116)

Equation (5.115) is equivalent to the two coupled linear systems(∇2L
∣∣
x[k]

)
�x[k] − (

C [k]
)T

�µ[k] = −∇F |x[k] + (C [k])Tµ[k]

(5.117)
C [k]�x[k] = s − c[k]

We can subtract (C [k])Tµ[k] from the first of these linear systems to obtain

(∇2L|x[k])�x[k] − (
C [k]

)T
µ[k+1] = −∇F |x[k] (5.118)

where µ[k+1] = µ[k] +�µ[k]. Thus, (5.115) is equivalent to[
(∇2L|x[k]) −(

C [k]
)T

C [k] 0

][
�x[k]

µ[k+1]

]
=

[−∇F |x[k]

s − c[k]

]
(5.119)

Let us now consider the quadratic optimization problem

minp
1
2 pT(∇2L|x[k])p +∇F |x[k] · p

(5.120)
subject to C [k] p + c[k] − s = 0

The Lagrangian of this problem is

L̃(p) = 1
2 pT(∇2L|x[k])p +∇F |x[k] · p − µ · [C [k] p + c[k] − s

]
(5.121)

and the constrained minimum of (5.120) occurs at ∇L̃ = 0,

(∇2L|x[k])p +∇F |x[k] − (
C [k]

)T
µ = 0 (5.122)

which is equivalent to (5.118). Thus, we have the quadratic problem to compute x[k+1] =
x[k] + p,

minp
1
2 pT(∇2L|x[k])p +∇F |x[k] · p

subject to ∇cm |x[k] · p + c[k]
m = 0 m ∈ Se (5.123)

∇cm |x[k] · p + c[k]
m ≥ 0 m ∈ Si

242 5 Numerical optimization

Because the constraints of (5.123) are linear, it is easier to identify how far one may move
before violating them. Quadratic problems such as (5.123) thus can be solved efficiently
with specialized techniques. For more on this topic (interior point, active set methods),
consult Nocedal & Wright (1999) or view the documentation for fmincon.

Constrained minimizer fmincon in MATLAB

The fmincon constrained minimizer

fmincon solves constrained optimization problems with the structure

minimize F(x)
subject to the constraints (linear and nonlinear)

(5.124)
Ax ≤ b A(eq)x = b(eq) c(x) ≤ 0 c(eq)(x) = 0

and the upper and lower bounds L B j ≤ x j ≤ U B j

The routine is called with the syntax

[x, F, exitflag, output, grad, Hessian] = fmincon (. . .
fun, x0, A, b, A eq, b eq, LB, UB, nonlcon, OPTIONS, P1, P2, . . .);

fun is the name of a function that returns the cost function (and optionally the gradient and
Hessian),

function F = fun(x, P1, P2, . . .);

x0 is the initial guess, and A, b, A eq, and b eq specify the linear constraints (if any). The
nonlinear constraint functions are returned by a user-supplied routine,

function [c,c eq] = nonlcon(x, P1, P2, . . .);

If any constraint is not present, use [] as a placeholder. The vectors of lower and upper
bounds for each parameter are LB and UB. If xj has no lower bound, set LB(j) = -Inf. If xj

has no upper bound, set UB(j) = Inf. OPTIONS is set by optimset. P1, P2, . . . are optional
parameters to be passed to fun.

The output variables are the constrained local minimum x, the cost function value F,
exitflag and output that provide information around the work done by fmincon.

Example. Finding the closest points on two ellipses

We revisit the problem of finding the closest points on two ellipses by minimizing the
squared distance between them,

F(x1, y1, x2, y2) = (x1 − x2)2 + (y1 − y2)2 (5.125)

Constrained minimizer fmincon in MATLAB 243

subject to the two equality constraints

a1(x1 − xc1)2 + b1(y1 − yc1)2 = 1
(5.126)

a2(x2 − xc2)2 + b2(y2 − yc2)2 = 1

where

xc1 = 0 yc1 = 0 a1 = 0.5 b1 = 0.3
(5.127)

xc2 = 5 yc2 = 5 a2 = 0.2 b2 = 0.4

Here, we use fmincon to find the closest points,

% specify ellipse data

ELL(1).xc = 0; ELL(1).yc = 0; ELL(1).a = 0.5; ELL(1).b = 0.3;

ELL(2).xc = 5; ELL(2).yc = 5; ELL(2).a = 0.2; ELL(2).b = 0.4;

% set initial guesses to ellipse centers with random offset

theta0 = [ELL(1).xc; ELL(1).yc; ELL(2).xc; ELL(2).yc];

theta0 = theta0 + 0.1∗randn(size(theta0));

% call fmincon to find closest points

Options = optimset(‘LargeScale’, ‘off’);

[theta, dist sq, exitflag, output] = fmincon (@ell cost fcn, theta0,. . .

[], [], [], [], [], [],@ell nonlcon, Options, ELL);

x1 = theta(1); y1 = theta(2); x2 = theta(3); y2 = theta(4);

The following routine returns the cost function:

function F = ell cost fcn(theta,ELL);

x1 = theta(1); y1 = theta(2); x2 = theta(3); y2 = theta(4);

F = (x1-x2)∧2 + (y1-y2)∧2;

return;

The equality constraint functions are returned by the routine

function [c,c eq] = ell nonlcon(theta, ELL);

c = 0; % no inequality constraints

c eq = zeros(2,1); % two equality constraints

% extract positions

x1 = theta(1); y1 = theta(2); x2 = theta(3); y2 = theta(4);

% constraint function that states that (x1, y1) is on first ellipse

dx = x1 - ELL(1).xc; dy = y1 - ELL(1).yc;

c eq(1) = ELL(1).a∗dx∧2+ELL(1).b∗dy∧2 - 1;

% similiarly for the second ellipse

dx = x2 - ELL(2).xc; dy = y2 - ELL(2).yc;

c eq(2) = ELL(2).a∗dx∧2 + ELL(2).b∗dy∧2 - 1;

return;

fmincon reports the two closest points to be

(x1, y1) = (0.83, 1.48) (x2, y2) = (3.22, 4.04) (5.128)

in agreement with the results shown in Figure 5.12.

244 5 Numerical optimization

Example. Optimal steady-state design of a CSTR

We wish to design a 1-l CSTR to produce C from A and B by the reactions

A+ B → C rR1 = k1(T)cAcB

A → S1 rR2 = k2(T)cA

C → S2 rR3 = k3(T)cC

(5.129)

The rate constants depend upon the temperature as

k j (T) = k j (Tref) exp

{
Ea j

RTref

[
1− Tref

T

]}
(5.130)

where

reaction 1 k1(Tref = 298 K) = 2.3
l

mol h

Ea1

RTref
= 15.4

reaction 2 k2(Tref = 298 K) = 0.2 h−1 Ea2

RTref
= 17.9

reaction 3 k3(Tref = 298 K) = 0.1 h−1 Ea3

RTref
= 22.3

(5.131)

We wish to vary the volumetric flow rate v, the concentrations cA0 and cB0 of A and B in the
inlet stream, and the temperature T to achieve various design goals. The vector of adjustable
design parameters is

θ = [υ cA0 cB0 T]T (5.132)

To maximize the production of C, the cost function is

F1(θ) = −υcC (5.133)

Equation (5.133) does not take into account the loss of A and C to side product formation.
Let us say that we can easily separate the products and recycle the unreacted A and B. For
simplicity, let us also neglect any heating/cooling or power costs. The net economic cost of
operating the reactor is then

F2(θ) = (−υ)[−$A(cA0 − cA)− $B(cB0 − cB)+ $CcC − $DS1 cS1 − $DS2 cS2] (5.134)

$A, $B, $C are the prices per mole of A, B, and C, and $DS1 , $DS2 are the disposal costs of
the side products. By minimizing this cost function, we get the maximal economic benefit.
Let us assume the prices

$A = 4.5 $B = 1.1 $C = 8.2
(5.135)

$DS1 = 1.0 $DS2 = 1.0

A and B are fed into the reactor in a carrier solvent, with initial concentrations subject to
the constraints

cA0 ≥ 10−4 M cB0 ≥ 10−4 M cA0 + cB0 ≤ 2 M (5.136)

The volumetric flow rate is constrained to be in the interval

10−4 l/h ≤ υ ≤ 360 l/h (5.137)

Optimal control 245

and the temperature is constrained to lie within the interval

298 K ≤ T ≤ 360 K (5.138)

To compute the steady-state concentrations, a dynamic model of the CSTR in overflow
mode is integrated until steady state is reached,

dcA

dt
= υ(cA0 − cA)

VR
− rR1 − rR2

dcB

dt
= υ(cB0 − cB)

VR
− rR1

(5.139)
dcC

dt
= −υcC

VR
+ rR1 − rR3

dcS1

dt
= −υcS1

VR
+ rR2

dcS2

dt
= −υcS2

VR
+ rR3

Initially, the concentrations equal the inlet values. Time integration ensures that we
design only for stable steady states. The constrained optimization is performed by opti-
mal design CSTR.m. Starting at the initial guess

υ(guess) = 1 c(guess)
A0 = 0.5 c(guess)

B0 = 0.5 T (guess) = 310 (5.140)

maximizing the production of C by minimizing (5.133) yields

initial F1 = −0.182 final F1 = −27.148
υ = 360 cA0 = 1 cB0 = 1 T = 360

(5.141)
cA = 0.913 cB = 0.924 cC = 0.075

cS1 = 0.011 cS2 = 9.8× 10−4

Thus, the optimal design is found at the limits of the constraints. A high flow rate yields
a low residence time and thus a small concentration of C in the outlet stream (note that
we maximize the product of this concentration with the volumetric flow rate). The A and
B inlet concentrations are maximized to yield the fastest rate of the first reaction, and the
temperature is at the upper limit. The loss of C by the third reaction is slight, as the short
residence time and low C concentration make the rate of this reaction small compared to
the first one.

Next, we maximize the economic benefit, by minimizing (5.134), starting at the design
(5.141), to yield the optimal design

initial F2 = −46.37 final F2 = −48.36
υ = 360 cA0 = 0.832 cB0 = 1.168 T = 360

(5.142)
cA = 0.749 cB = 1.094 cC = 0.073

cS1 = 0.009 cS2 = 9.5× 10−4

Here, at the cost of producing slightly less C, we have increased the economic benefit by
reducing the side product formation and the consumption of A by enriching the feed stream
with B.

Optimal control

Let us consider a dynamic system, described by the state vector x(t) ∈ �N , and governed
by the ODE system

ẋ = f (t, x(t), u(t);θ) (5.143)

246 5 Numerical optimization

u(t) ∈ �M is a set of tunable control inputs and θ is a set of fixed system parameters.
For simplicity, we drop explicit reference to the latter and write the ODE system as ẋ =
f (t, x, u). At time t0, we start at the initial state x(t0) = x[0], and wish to determine the
trajectory of control inputs u(t) within t ∈ [t0, tH] that minimize a cost functional

F
[
u(t); x[0]

] =
tH∫

t0

σ (s, x(s), u(s))ds + π (x(tH)) (5.144)

tH is the horizon time for this optimal control problem. For example, we may wish to maintain
the system at some set point xset, in which case a suitable choice of cost functional is

F
[
u(t); x[0]

] =
tH∫

t0

{|x(s)− xset|2 + CU|u(s)− uset|2}ds + CH|x(tH)− xset|2 (5.145)

uset is the input necessary to maintain the system steady at the set point and CU, CH > 0.
How do we find the “best” u(t) that minimizes (5.144)? We describe first a direct approach

for an open-loop problem in which we compute the entire optimal trajectory for a specific
initial state. Then, we outline an alternative dynamic programming approach that turns the
integral equation (5.144) into a corresponding time-dependent partial differential equation,
and generates a closed-loop optimal feedback control law.

As a first approach, let us parameterize u(t) as a piecewise-constant function by splitting
[t0, tH] into NS subintervals separated by the time points

tk = t0 + k(�t) �t = tH − t0
NS

(5.146)

In the subinterval tk−1 ≤ t < tk , we hold u(t) constant at u[k]. Thus, we write

u(t) =
Ns∑

k=1

u[k]�k(t) �k(t) =
{

1, tk−1 ≤ t < tk
0, otherwise

(5.147)

and characterize the trajectory u(t) by the vector U ∈ �NS M ,

U T = [(
u[1]

)T(
u[2]

)T
. . .

(
u[Ns]

)T]
(5.148)

Let x(t ; U) be the solution to the ODE-IVP

d

dt
x(t ; U) = f (t, x(t ; U), u(t ; U)) x(t0) = x[0] (5.149)

where u(t ; U) is computed by (5.147). The cost functional (5.144) then is approximated by
a cost function of U,

F
(
U ; x[0]

) = Ns∑
k=1

 tk∫

tk−1

σ
(
s, x(s; U), u[k]

)
ds

+ π (x(tH; U)) (5.150)

We then minimize (5.150) using the techniques described above. As U can be of quite high
a dimension, this optimization problem can be costly.

Optimal control 247

An open-loop optimal control routine

optimal control.m implements the procedure described above, and is called with the syntax

function [TRAJ, iflag] = optimal control(FUN, PARAM, SIM, TRAJ0);

FUN is a structure containing the names of the user-supplied routines that define the
optimal control problem. FUN.f is the routine that returns the time derivative vector for
ẋ = f (t, x, u),

function f =FUN.f(t, x, u, PARAM);

PARAM is an optional user-specified structure of fixed system parameters. FUN.sigma
returns the integrand σ (t, x, u) of the cost functional,

function sigma =FUN.sigma(t, x, u, PARAM);

FUN.pi returns the value of π (x(tH)),

function pi =FUN.pi(xH, PARAM);

FUN.constraint is an optional routine that defines the set of constraints that apply to the
control input in each subinterval,

Au[k] ≤ b A(eq)u[k] = b(eq) L B(j) ≤ u[k]
j ≤ U B(j) (5.151)

and is called with the syntax

function UCON = FUN.constraint();

UCON contains the fields UCON.A, UCON.b, UCON.A eq, UCON.b eq, UCON.LB, and
UCON.UB. FUN.u0 is a routine that returns the initial guess of the time-dependent con-
trol input u(t),

function u0 =FUN.u0(t, PARAM);

SIM is a data structure that contains information about how the optimization calculation is
to be performed. SIM.t0 is the initial time and SIM.tH is the horizon time. SIM.NS is the
number of subintervals. SIM.x0 is the initial state. SIM.isRestart is 0 if the simulation is to
start at the initial guess supplied by FUN.u0 and is nonzero if the information in the optional
input parameter TRAJ0 sets the initial input trajectory. SIM.constraint is 0 if the control
inputs are not constrained, and is nonzero if FUN.constraint is to be used to define a set of
input control constraints. SIM.verbose is 0 if no information is to be printed to the screen
and is nonzero if the status of the calculation is to be displayed.

The output is TRAJ, a data structure that contains information about the optimal tra-
jectory. TRAJ.t is a vector of the times that separate the piecewise-constant subintervals,
TRAJ.t(k) = tk . The u[k] for that subinterval are found in row k of TRAJ.u. The state tra-
jectory for the optimal control inputs is returned in TRAJ.t xtraj and TRAJ.x xtraj in the
same format used by the ODE solvers. The control inputs at these times are returned in
TRAJ.u xtraj.

248 5 Numerical optimization

2

2

1

1

2

1

2

t
t

1

2

a

t

t

1

Figure 5.14 (a) Optimal state and (b) control trajectories for the set-point problem.

test optimal control.m demonstrates the use of this routine for the simple example of
minimizing for the system

ẋ = −(x − 1)+ u (5.152)

a cost functional that forces x to a set point xset = 2,

F
[
u(t); x [0]

] =
tH∫

t0

{|x(s)− xset|2 + CU|u(s)− uset|2}ds + CH|x(tH)− xset|2 (5.153)

where uset = 1, tH = 10, CU = 0.1, CH = 10, and the control inputs are subject to the
constraints −10 ≤ u ≤ 10. Fifty piecewise-constant subintervals are used to parameterize
u(t). From an initial uniform guess u(t) = uset = 1, the optimal state and control trajectories
are shown in Figure 5.14.

Dynamic programming

We revisit the optimal control problem of finding the trajectory of control inputs u(t) for
t ∈ [t0, tH] that minimizes the cost functional

F
[
u(t); x[0]

] =
tH∫

t0

σ (s, x(s), u(s))ds + π (x(tH)) (5.154)

for a system governed by the ODE-IVP,

ẋ = f (t, x, u) x(t0) = x[0] (5.155)

We introduce here a dynamic programming approach due to Bellman (1957), and define
at each t ∈ [t0, tH] the Bellman function V(t, x) to be the optimal “cost to go” value; i.e.,

Optimal control 249

the additional cost accrued after time t if we were to implement the optimal inputs at all
subsequent times s ∈ [t, tH],

V (t, x) = minu(s>t)

tH∫
t

σ (s, x(s), u(s))ds + π(x(tH))

 (5.156)

V (t0, x[0]) is the optimal value of F[u(t); x[0]]. At the horizon time V (tH, x) = π (x), but
how do we work backwards in time from this known result, and how from such a calculation,
do we determine the optimal u(t)?

We obtain a differential equation for V (t, x) by taking the derivative of (5.156), evaluated
at the optimal control input u(t),

d

dt
V (t, x) = −σ (t, x(t), u(t)) (5.157)

We relate this total time derivative to partial derivatives of V (t, x),

d

dt
V (t, x(t)) = ∂V

∂t
+∇V · dx

dt
= ∂V

∂t
+∇V · f (t, x, u) (5.158)

Thus, for the optimal control trajectory, (5.157) and (5.158) yield the partial differential
equation

∂V

∂t

∣∣∣∣
opt

= −σ (t, x, u)−∇V · f (t, x, u) (5.159)

We next define the “backward” time τ = tH − t , and rewrite the Bellman function as
ϕ(τ, x) = V (t, x). We have for this equation the “initial” condition ϕ(0, x) = π(x). We
then rewrite (5.159) as

∂ϕ

∂τ

∣∣∣∣
opt

= σ (tH − τ, x, u)+∇ϕ · f (tH − τ, x, u) (5.160)

For nonoptimal trajectories, ϕ(τ, x) increases faster with increasing τ than for the optimal
trajectory, so that, in general,

∂ϕ

∂τ
≥ σ (tH − τ, x, u)+∇ϕ · f (tH − τ, x, u) (5.161)

Thus, for the optimal trajectory, we have the following PDE for ϕ(τ, x), known as the
Hamilton–Jacobi–Bellman (HJB) equation:

∂ϕ

∂τ
= minu(τ, x)[σ (tH − τ, x, u)+∇ϕ · f (tH − τ, x, u)] (5.162)

We work backwards in time, and at each (τ , x), use the input u(τ, x) that minimizes the term
in the square brackets. Note that it is possible for ∂ϕ/∂τ < 0 even if σ (tH − τ, x, u) > 0, as
the requirement for monotonic decrease in V (t, x) with increasing t is dϕ/dτ = ∂φ/∂τ −
∇ϕ · f > 0.

In an open-loop control problem, we compute the optimal control input trajectory and
then fully implement it over the entire period t0 ≤ t ≤ tH. For this, the direct approach

250 5 Numerical optimization

of the last section is sufficient. In a closed-loop control problem, we only implement the
initial input u∗(t0) = u(tH − t0, x[0]) for some period �t , after which we measure the result-
ing new state xnew. This may not be equal to x∗(�t) due to random error or inadequacy
of the model. We use feedback to compensate for this, by computing a new “best cur-
rent input” by minimizing the functional again, shifting t0 → t0 +�t, tH → tH +�t , and
x[0] → xnew. Note, however, that if neither the system’s time derivative function nor the
cost functional integrand depend upon the absolute value of time, then we have exactly
the same dynamic programming problem that we have just solved from (5.162). Therefore,
we do not need in this case to redo the entire calculation, but just implement as the new
control input u(tH − t0, xnew). Thus, we obtain from u(τ = tH − t0, x) the optimal feedback
control law for the system, and this is the primary advantage of the dynamic programming
approach.

For further description of this subject, and its implementation in process control, con-
sult Sontag (1990). Of course, to apply this method, we must be able to solve (5.162).
The numerical solution of such partial differential equations is the subject of the next
chapter.

Example. A simple 1-D optimal control problem

We consider again the problem in which we wish to control x(t) at a set point xset = 2. The
system is governed by the ODE

ẋ(t) = f (x, u) = −(x − 1)+ u (5.163)

We wish to determine a control law for this system by solving the HJB equation. The cost
functional that we wish to minimize is

F
[
u(t); x [0]

] =
tH∫

0

{
CU

2
[u(s)− uset]

2 + [x(s)− xset]
2

}
ds + CH[x(tH)− xset]

2

(5.164)
uset = 1 is the steady value that maintains the system at the set point. Thus, this functional
penalizes both excessive departure from the set point and very large control inputs. The
HJB equation for this system is

∂ϕ

∂τ
= minu(τ, x)

{
CU

2
[u − uset]

2 + [x − xset]
2 + ∂ϕ

∂x
[−(x − 1)+ u]

}
(5.165)

Note that if CU = 0, the extremum condition becomes ∂ϕ/∂x = 0, and so if ∂ϕ/∂x > 0, u
should be decreased until it reaches its lower bound, and it should be increased to its upper
bound if ∂ϕ/∂x < 0. Thus, CU > 0 is necessary for an unconstrained minimum to exist. If
so, the optimal control input is

u(τ, x) = uset − C−1
U

∂ϕ

∂x
(5.166)

Optimal control 251

We thus have the following PDE problem,

∂ϕ

∂τ
= CU

2
[u(τ, x)− uset]

2 + [x − xset]
2 + ∂ϕ

∂x
[−(x − 1)+ u(τ, x)]

(5.167)
initial condition ϕ(0, x) = CH[x(tH)− xset]2

To solve this problem numerically, we use the method of finite differences, explained in
further detail in Chapter 6. We restrict the x-domain to xlo ≤ x ≤ xhi, where the limits are
chosen to be larger than any conceivable x-value that could be encountered in practice.
Then, we place a grid of N points, uniformly-spaced, in this domain,

xk = xlo + (k − 1)(�x) �x = xhi − xlo

N − 1
(5.168)

At each xk, we use a finite difference approximation to estimate ∂ϕ/∂x,

∂ϕ

∂x

∣∣∣∣
x j

= 1

�x
[Aloϕk−1 + Amidϕk + Ahiϕk+1] Alo + Amid + Ahi = 0 (5.169)

where ϕk(τ) ≡ ϕ(τ, xk). For reasons that will become clear in our discussion of convection
in Chapter 6, we choose here the set of one-sided differences,

if f (x, u) ≤ 0 Alo = −1 Amid = +1 Ahi = 0
(5.170)

else Alo = 0 Amid = −1 Ahi = +1

Note that if xhi is large enough, f (t, x, u) = −(x − 1)+ u < 0, and we have the one-sided
difference pointing “into” the grid, and we have no problem applying (5.169). Similar
reasoning holds at the lower boundary.

We now solve the HJB equation numerically by integrating the set of ODEs

dϕk

dτ
= CU

2
[uk(τ)− uset]

2 + [xk − xset]
2 + ∂ϕ

∂x

∣∣∣∣
xk

f (xk, uk(τ))

f (xk, uk(τ)) = −(xk − 1)+ uk(τ) ϕk(0) = CH[xk(tH)− xset]
2 (5.171)

uk(τ) = uset − C−1
U

∂ϕ

∂x

∣∣∣∣
xk

The feedback control law ucon(x) is then

ucon(xk) = uk(τ = tH) (5.172)

The optimal control at any point may be computed from (5.166). control 1D HJB.m solves
this HJB equation for specified tH, CU, CH. For tH = 10, CU = 1, and CH = 10, the resulting
feedback control law is shown in Figure 5.15. For this simple linear system and quadratic
cost functional, the optimal control law is a simple proportional controller with a gain of
K = −0.732. The advantage of this approach is that it can be extended (though at perhaps
great numerical cost) to nonlinear systems and to systems involving input constraints.

252 5 Numerical optimization

2 set

 set

1

−2

−

−1 −

Figure 5.15 Optimal feedback control law.

MATLAB summary

The optional MATLAB optimization toolkit contains useful routines for finding local min-
ima. fminsearch uses the nonlinear simplex method, but for unconstrained problems, fmi-
nunc is preferred. The latter uses either a gradient method or a trust-region Newton method
depending upon the size of the problem and the level of information about the gradi-
ent and Hessian supplied by the user. fmincon finds a local minimum in the presence
of linear and nonlinear equality and inequality constraints. The syntax of these routines
is detailed in the corresponding sections of this chapter. If the optimization toolkit is not
available, gradient minimizer.m can be used to perform unconstrained minimizations. Con-
straints could then be handled explicitly using the augmented Lagrangian method described
above. optimal control.m uses a direct approach to solve open-loop optimal control
problems.

Problems

5.A.1. Compute by hand a minimum of the cost function, for x ∈ �2

F(x) = (x1 − 3)+ (x2 − 1)+ (x1 − 1)2 + (x2 − 3)2 (5.173)

Check your results by solving the problem numerically.

5.A.2. Compute the point x ∈ �2 that minimizes the cost function

F(x) = g · x + 1
2 x · H x g =

[−2
1

]
H =

[
3 1
1 2

]
(5.174)

Now, compute the constrained minimum subject to

x2
1 + x2

2 = 1 (5.175)

Problems 253

Table 5.2 Measured data of
system performance

θ1 θ 2 F(θ)

2.653 2.639 0.948
2.625 2.703 0.744
1.865 2.699 0.381
2.591 3.104 0.393
1.337 2.772 0.648
1.779 2.699 0.411
2.470 2.515 1.162
1.265 3.247 0.784

Then, compute the constrained minimum along the unit circle with the additional require-
ments that both x1 and x2 be nonnegative.

5.B.1. We wish to use the enzyme whose kinetics, described by (5.51), were studied earlier
in this chapter, in an immobilized-enzyme packed bed reactor. Neglecting any internal
mass transfer resistance (we assume the enzyme is immobilized in very small pellets), we
compute the outlet substrate concentration by solving the ODE-IVP

dcS

dW
= − 1

αcυ

[
VmcS

Km + cS + K−1
si c2

S

]
cS(W = 0) = cS0 (5.176)

cS0 is the substrate concentration in moles, and is constrained to lie in [10−4, 2]. W is the mass
of enzyme in the reactor in milligrams, and we integrate (5.176) to the total mass WR = 1 g.

The volumetric flow rate v through the reactor is in liters per minute. αc = 106µmol/mol
is a conversion factor, and the kinetic constants are Vm = 200 µmol/(min mgE), Km =
0.201 M, Ksi = 0.5616 M. Plot the inlet substrate concentration cS0 that maximizes the
outlet molar flow rate of product, as a function of υ.

5.B.2. We wish to optimize the performance of a process with two adjustable parameters.
Table 5.2 contains measured data of the cost function that we wish to minimize. Fit to this
data some general (e.g. polynomial) model and use this model to propose a design that you
think might have an even lower cost function value. To avoid extrapolating outside of the
region of data, use a set of constraints that will limit the amount to which we can search far
away from the existing data points.

5.B.3. We wish to determine the best path for a road connecting two points in hilly ter-
rain. Let r ∈ �2 be the coordinates of a point in kilometers and let the elevation at that
point, also in kilometers, be z(r). We represent the measured ground elevation data as
a sum of contributions from individual hills, each hill being represented by a Gaussian
function,

z(r) =
Nh∑

k=1

z[k]
max exp

{− 1
2

(
r − r [k]

c
) · (�[k]

)−1(
r − r [k]

c
)}

(5.177)

254 5 Numerical optimization

2

2

2

2

A

1

1

1

22

1

1

1

1

1

1

22

22

22

22

22

22

22

2

2

2
2212

Figure 5.16 Contour map of region, showing lines at constant elevation. Start and end positions of
the planned road are shown.

In the region of interest, we use a representation with four hills,

z[1]
max = 1.2 z[2]

max = 0.8 z[3]
max = 0.5 z[4]

max = 0.5

r [1]
c =

[
3
4

]
r [2]

c =
[

4
1

]
r [3]

c =
[−1
−2

]
r [4]

c =
[−1

2

]
(5.178)

�[1] =
[

1.0 0.1
0.1 1.5

]
�[2] =

[
3.0 0.5
0.5 1.0

]
�[3] =

[
2.5 0.4
0.4 0.8

]

�[4] =
[

3.0 0.2
0.2 1.2

]

Figure 5.16 shows the elevation contours along with the start (4,−2) and end (2, 7) positions
of the planned road.

All land is available to build upon. Our task is to find the shortest path between the two
end points subject to the constraint that the grade cannot be greater than 8%, i.e., the slope
cannot be larger in magnitude than 0.08.

Let 0 ≤ s ≤ 1 be a contour variable and r (s) be the path of the road, subject to

r (0) = r start = [4 −2]T r (1) = r end = [2 7]T (5.179)

We discretize the path by setting N contour positions sk = k(N + 1)−1 and the coordinates
r [k] = r (sk) = [x [k] y[k]]T. We wish to minimize

FC =
(
r [1] − r start

)2 +
N−1∑
k=1

(
r [k+1] − r [k]

)2 + (
r end − r [N]

)2
(5.180)

Problems 255

subject to the constraints that for each road segment,∣∣z(r [k+1]
)− z

(
r [k]

)∣∣√(
x [k+1] − x [k]

)2 + (
y[k+1] − y[k]

)2
≤ �max �max = 0.08 (5.181)

Using this approach, propose a path for the road to follow.

5.B.4. We wish to produce C from A and B by the reaction network

A+ B → C+ D rR1 = k1(T)cAcB

C+ B → S1 + D rR2 = k2(T)cCcB

A+ D → S2 rR3 = k3(T)cAcD (5.182)
A+ B → S3 rR4 = k4(T)cAcB

C+ B → S4 rR5 = k5(T)cCcB

A CSTR has an input stream with a velocity of 1 l/s containing species A and B in a carrier
solvent, such that

cA0 + cB0 < 2 M (5.183)

We have the following temperature-dependent rate constant data,

k1(298 K) = 0.01
l

mol s
k1(310 K) = 0.02

l

mol s
k2(T) = k1(T)

k3(298 K) = 0.001
l

mol s
k3(310 K) = 0.005

l

mol s
(5.184)

k4(298 K) = 0.001
l

mol s
k4(310 K) = 0.005

l

mol s
k5(T) = k4(T)

We wish to design the reactor (assumed operated isothermally) to maximize the concentra-
tion of C in the output stream. We vary the inlet concentrations cA0 and cB0, the volume of
the reactor V, within the range

10 l ≤ V ≤ 10 000 l (5.185)

and the temperature T within the range

298 K ≤ T ≤ 335 K (5.186)

Propose an optimal steady-state CSTR design.

5.C.1. You wish to control the height h(t) of water in a cylindrical tank of diameter 50 cm
by varying the inlet volumetric flow rate υ0(t) in liters per second. There is an outlet hole
at the bottom of the tank of diameter 1 cm. Use Bernoulli’s equation to propose an ODE
model for h(t). Then, compute the optimal feed control law υ0(h), based on minimizing the
cost functional

F
[
υ0(t); h[0]

] =
tH∫

0

{
CU

2
[υ0(s)− υ0, set]

2 + [h(s)− hset]
2

}
ds + CH[h(tH)− hset]

2

(5.187)

256 5 Numerical optimization

taret

taret

θ ee vatin ane

φ deectin ane

traectr rectie

wind

seae ve

n

r i

r i i

Figure 5.17 Shooting angles for the targeting of a projectile.

hset = 1 m is the set-point. υ0,set is the flow rate that maintains the height at the set-point at
steady state. Use tH = 600 s, CU = 0.1(hset/υ0,set)2, and CH = 103h−2

set . Enforce the control
input constraints that 0 ≤ υ0(t) ≤ 10υ0,set.

5.C.2. An early application of computing was the tabulation of accurate ballistic tables for
artillery to account for wind and drag. Consider the case shown in (Figure 5.17) in which
a projectile leaves a gun at an elevation of hgun and is intended to hit a stationary target
at an elevation htar and relative coordinates (xtar, ytar). For specified values of the elevation
and deflection angles (θ, φ), we can integrate Newton’s equation of motion to predict the
impact location (ximp, yimp), as the position where the projectile passes through the target’s
elevation on the way down. Then, to aim the projectile we minimize the cost function

F (drag)(θ, φ) = [ximp(θ, φ)− xtar]
2 + [yimp(θ, φ)− ytar]

2 (5.188)

The equation of motion for the projectile is

mp
d

dt
v = mpg − (

1
2ρair Ap

)
CDUu (5.189)

ρair is the density of air, Ap is the cross-sectional area of the projectile, CD is an empirical
drag coefficient, and u is the relative velocity of the projectile with respect to that of the
wind w ,

u = v− w U = |u| (5.190)

For projectile velocities less than about a third of the speed of sound in air, compressibility
effects may be neglected and the drag coefficient is a function of Reynolds’ number alone,
defined as

Re = ρairU (2Rp)

µair
(5.191)

Problems 257

The viscosity of air is µair and the projectile radius is Rp. Drag coefficient data may be
found in Table 5-22 of Perry & Green (1984) or the empirical correlations in (2.163) and
the data of Table 2.2 may be used instead. We assume that the atmospheric conditions take
their standard sea-level values (25 ◦C, 1 atm). For simplicity we neglect any variation of
wind speed with altitude.

Write a program that computes the optimal angles for a specified compass bearing �

and distance D to the target, the gun elevation hgun and that of the target htar, the density ρs

and mass mp of the projectile, the wind speed W and the compass bearing of the wind �W

(e.g. 360◦ if the wind is from the north), and the speed vgun at which the projectile leaves
the gun.

Using this program, compute the optimal angles for the case where the gun and target
are both at the same elevation, the projectile is made of steel and weighs 10 Kg, and the
gun barrel velocity is 100 m/s (chosen to be quite low so that compressibility effects are
negligible, for a more realistic case the gun velocity would be higher). The target is at a
distance of 500 m to the east, and the wind is at 15 mph from the north.

How much of a lateral distance error would you have made if you had neglected wind
and drag?

5.C.3. Modify your program from Problem 5.C.2 to account for a moving target.

6 Boundary value problems

Boundary value problems (BVPs) involve the solution of ODEs or partial differential equa-
tions (PDEs) on a spatial domain, subject to boundary conditions that hold on the domain
boundary. Many problems from solid and fluid mechanics, electromagnetics, and heat and
mass transfer are expressed naturally as BVPs. The forms of these differential equations
often resemble each other because they arise from similar conservation principles. Here the
emphasis is upon BVPs that arise from problems in transport phenomena.

This chapter focuses upon real-space methods, in which a computational grid is overlaid
upon the domain. The BVP is then converted into a set of ODEs for a time-dependent
problem or a set of algebraic equations for a steady problem. This technique can be used
even when no analytical solution exists, and can be extended to BVPs with multiple equations
or complex domain geometries. Here, the focus is upon the methods of finite differences,
finite volumes, and finite elements. These methods have many characteristics in common;
therefore, particular attention is paid to the finite difference method, as it is the easiest to
code. The finite volume and finite element methods also are discussed; however, as the
reader is most likely to use these in the context of prewritten software, the emphasis is upon
conceptual understanding as opposed to implementation.

BVPs from conservation principles

Let ϕ(r , t) be some time-varying field, i.e., a function that assigns to each position r and
time t a unique value ϕ(r , t). Common examples of fields in chemical engineering include

ϕ = ρ mass density
ϕ = ρv linear momentum density

(6.1)
ϕ = 1

2ρ|v|2 + ρû total kinetic and internal energy density
ϕ = ci concentration of species i

Each of these fields represents the density of some quantity �. Let us consider a closed
domain �, a control volume (CV), with boundary ∂� (Figure 6.1), and write a balance for
the total amount of � within �,

d

dt

∫

�

ϕ(r, t)dr

 =

∫
∂�

ϕ[v · (−n)]d S +
∫
∂�

[JD · (−n)]d S +
∫
�

s(r , t, ϕ)dr (6.2)

258

BVPs from conservation principles 259

Ω

∂Ω ndar

d
n

v

Figure 6.1 Fixed control volume (CV) in space.

The left-hand side is the rate of change of the total amount of � within �. The first term
on the right-hand side is the net convective transport of � across ∂� into � by the velocity
field of the medium v(r , t), n being the outward normal vector at the boundary. The second
term is the net diffusive transport of � across ∂� into �, with the flux vector JD often being
related to the local field gradient by a constitutive equation of the form of Fick’s law,

anisotropic diffusion J D = −� ·∇ϕ � = �m�n�mne[m]e[n]

(6.3)
isotropic diffusion J D = −�∇ϕ � ∈ �

The third term on the right-hand side is a source term, s(r , t, ϕ) being the amount of �

generated per unit volume per unit time at (r , t). Equation (6.2) is known as a macroscopic
balance, as it applies to a control volume of finite size. A corresponding microscopic balance
is obtained through use of the divergence theorem,∫

∂�

n · wd S =
∫
�

∇ · wdV (6.4)

to convert the surface integrals into volume integrals,∫
�

∂ϕ

∂t
dr = −

∫
�

[∇ · (ϕv)]dr −
∫
�

[∇ · JD]dr +
∫
�

s(r , t, ϕ)dr (6.5)

As all integrals are over the same domain, we can combine them,∫
�

[
∂ϕ

∂t
+∇ · (ϕv)+∇ · JD − s(r , t, ϕ)

]
dr = 0 (6.6)

This balance must hold for any arbitrary fixed control volume, requiring the field to satisfy
everywhere the partial differential equation

∂ϕ

∂t
= −∇ · (ϕv)−∇ · JD + s(r , t, ϕ) (6.7)

Substituting (6.3) for the diffusive flux yields

∂ϕ

∂t
= −∇ · (ϕv)+∇ · [�∇ϕ]+ s(r , t, ϕ) (6.8)

For isotropic diffusion with a constant �, this takes the form of a classic convection/diffusion
equation with a source term,

∂ϕ

∂t
= −∇ · (ϕv)+ �∇2ϕ + s(r, t, ϕ) (6.9)

260 6 Boundary value problems

As source terms often arise from chemical reaction, (6.9) is also known as a convec-
tion/diffusion/reaction equation.

In this chapter, we consider the numerical solution of PDEs of the form (6.9). We focus
first upon stationary problems, for which the steady-state field ϕ(r) satisfies the PDE

0 = −∇ · (ϕv)+ �∇2ϕ + s(r , t, ϕ) (6.10)

and then treat time-dependent problems. Here, we consider general transport-type PDEs,
but do not address the particular numerical issues that arise in computational fluid dynamics
(CFD). While the methods of finite differences, finite volumes, and finite elements, described
here, are used in CFD, a few additional concerns arise, particularly involving the coupling
of the pressure and velocity fields. To do justice to this subject would require a dedicated
text; therefore, for further details the reader is referred to Ferziger & Peric (2001).

Real-space vs. function-space BVP methods

There are two general approaches to solving BVPs. In a function-space method, we write
the solution as a linear combination of basis functions {χm(r)}, each satisfying all boundary
conditions,

ϕ(r , t) =
∑

m

cm(t)χm(r) (6.11)

ϕ(r, t) then automatically satisfies all boundary conditions (assumed to be linear in ϕ), and
we have merely to find the {cm(r)} that best satisfy (6.9).

Alternatively, in a real-space method, we specify a number of grid points r[j] ∈ � and
compute numerically the field values ϕ(r [j], t) at these points. While function-space methods
can yield analytical solutions for some linear PDEs in simple domains, real-space methods
require numerical solution yet are more generally applicable, especially for problems with
nonlinear source terms or complex domain geometries. We thus restrict our focus to real-
space methods, although the finite element method will be seen to mix both approaches. For
further discussion of function-space approaches, consult Bird et al. (2002), Deen (1998),
and Stakgold (1979).

The finite difference method applied to a 2-D BVP

Let us consider a steady 2-D BVP on a rectangular domain involving only diffusion and
a position-dependent source term, −∇2ϕ = f (r), the Poisson equation. We require the
solution to be zero on all boundaries, a Dirichlet-type boundary condition. Thus, the BVP
is

−∇2ϕ = −∂2ϕ

∂x2
− ∂2ϕ

∂y2
= f (x, y) 0 ≤ x ≤ L 0 ≤ y ≤ H

BC 1 ϕ(0, y) = 0 0 ≤ y ≤ H
BC 2 ϕ(L , y) = 0 0 ≤ y ≤ H (6.12)
BC 3 ϕ(x, 0) = 0 0 ≤ x ≤ L
BC 4 ϕ(x, H) = 0 0 ≤ x ≤ L

The finite difference method applied to a 2-D BVP 261

B1

B2

B

B

i

i 1
 n 1

i1
 n

i
n i 1

i 1
 n 1

i 1
 n

Figure 6.2 Regular 2-D grid with the labeling scheme for the finite difference method.

This BVP arises in fluid mechanics for the case of laminar flow of a Newtonian fluid through
a rectangular duct, where

ϕ(x, y) = vz(x, y) f (x, y) = 1

µ

[
−
(

�P

�z

)
+ ρgz

]
(6.13)

We solve (6.12) numerically using the method of finite differences, encountered earlier in
Chapters 1 and 2. We place a regular grid of points as shown in Figure 6.2. To the point at
(xi, yj), we assign a unique integer label n = (i − 1)Ny + j. The neighboring points, and
their labels, are

north (N) (xi , y j+1) m = n + 1
east (E) (xi+1, y j) m = n + Ny (6.14)
south (S) (xi , y j−1) m = n − 1
west (W) (xi−1, y j) m = n − Ny

We wish to compute the vector of grid point values,

ϕ = [ϕn] ∈ �N N = Nx Ny ϕn = ϕ(xi , y j) n = (i − 1)Ny + j (6.15)

For each grid point on a boundary (circled in Figure 6.2), we obtain from the boundary
condition a corresponding linear algebraic equation

ϕn = ϕ(xi , y j) = 0 n = (i − 1)Ny + j
BC 1 i = 1 1 ≤ j ≤ Ny

BC 2 i = Nx 1 ≤ j ≤ Ny (6.16)
BC 3 1 < i < Nx j = 1
BC 4 1 < i < Nx j = Ny

We obtain an algebraic equation for each grid point in the interior by requiring the PDE to

262 6 Boundary value problems

be satisfied locally:

−∂2ϕ

∂x2

∣∣∣∣
(xi ,y j)

−∂2ϕ

∂y2

∣∣∣∣
(xi ,y j)

= f (xi , y j) (6.17)

The key idea of finite differences is to approximate these local derivatives by algebraic
differences of the field values at neighboring grid points.

Finite difference approximations

In the finite difference method, we approximate the value of the derivative of f (x) at x0

using a truncated Taylor series approximation for small �x,

f (x0 +�x) = f (x0)+ (�x)
d f

dx

∣∣∣∣
x0

+ O[(�x)2] (6.18)

to yield

d f

dx

∣∣∣∣
x0

= f (x0 +�x)− f (x0)

�x
+ O[�x] (6.19)

Similarly, from the expansion in the opposite direction,

f (x0 −�x) = f (x0)+ (−�x)
d f

dx

∣∣∣∣
x0

+ O[(�x)2] (6.20)

we obtain

d f

dx

∣∣∣∣
x0

= f (x0)− f (x0 −�x)

�x
+ O[�x] (6.21)

Both of these one-sided difference approximations have errors proportional to �x, the
spacing between successive grid points. Subtracting the two,{

f (x0 +�x) = f (x0)+ (�x)
d f

dx

∣∣∣∣
x0

+ (�x)2

2

d2 f

dx2

∣∣∣∣
x0

+ O[(�x)3]

}

−
{

f (x0 −�x) = f (x0)− (�x)
d f

dx

∣∣∣∣
x0

+ (�x)2

2

d2 f

dx2

∣∣∣∣
x0

+ O[(�x)3]

}
(6.22)

the zeroth-and second-order terms cancel out, and the resulting central difference approxi-
mation is second-order accurate,

d f

dx

∣∣∣∣
x0

= f (x0 +�x)− f (x0 −�x)

2(�x)
+ O[(�x)2] (6.23)

The error of (6.23) is proportional to the square of the grid point spacing, thus it decays
to zero as �x → 0 more rapidly than the errors of one-sided formulas. Equation (6.23) is
more accurate than (6.19) or (6.21).

The finite difference method applied to a 2-D BVP 263

We can approximate second derivatives similarly by adding the expansions,{
f (x0 +�x) = f (x0)+ (�x)

d f

dx

∣∣∣∣
x0

+ (�x)2

2

d2 f

dx2

∣∣∣∣
x0

+ (�x)3

3

d3 f

dx3

∣∣∣∣
x0

+ O[(�x)4]

}
(6.24)

+
{

f (x0 −�x) = f (x0)− (�x)
d f

dx

∣∣∣∣
x0

+ (�x)2

2

d2 f

dx2

∣∣∣∣
x0

− (�x)3

3!

d3 f

dx3

∣∣∣∣
x0

+ O[(�x)4]

}

The first-and third-order terms cancel, yielding

f (x0 +�x)+ f (x0 −�x) = 2 f (x0)+ [(�x)2]
d2 f

dx2

∣∣∣∣
x0

+ O[(�x)4] (6.25)

and an approximation for the second derivative,

d2 f

dx2

∣∣∣∣
x0

= f (x0 −�x)− 2 f (x0)+ f (x0 +�x)

(�x)2
+ O[(�x)2] (6.26)

that has the same order of accuracy as (6.23). For partial derivatives, similar finite difference
approximations exist:

∂ f

∂x

∣∣∣∣
(x0,y0)

≈ f (x0 +�x, y0)− f (x0 −�x, y0)

2(�x)

≈ f (x0 +�x, y0)− f (x0, y0)

(�x)
≈ f (x0, y0)− (x0 −�x, y0)

(�x)
(6.27)

∂2 f

∂x2

∣∣∣∣
(x0,y0)

≈ f (x0 −�x, y0)− 2 f (x0, y0)+ f (x0 +�x, y0)

(�x)2
(6.28)

Finite difference solution of a Poisson BVP

We apply (6.28) to approximate the local partial derivatives in (6.17),

∂2ϕ

∂x2

∣∣∣∣
(xi ,y j)

≈ ϕ(xi−1, y j)− 2ϕ(xi , y j)+ ϕ(xi+1, y j)

(�x)2

(6.29)
∂2ϕ

∂y2

∣∣∣∣
(xi ,y j)

≈ ϕ(xi , y j−1)− 2ϕ(xi , y j)+ ϕ(xi , y j+1)

(�y)2

and obtain a linear equation for each (xi, yj) (a discretization of the PDE),

−ϕ(xi−1, y j)+ 2ϕ(xi , y j)− ϕ(xi+1, y j)

(�x)2
+ −ϕ(xi , y j−1)+ 2ϕ(xi , y j)− ϕ(xi , y j+1)

(�y)2

= f (xi , y j) (6.30)

We write this equation in standard matrix-vector form by employing the labeling

264 6 Boundary value problems

1

1

2

2

1

2

1

Figure 6.3 Solution by finite differences of the Poisson BVP with a source term f = 1.

scheme, ϕn = ϕ(xi , y j), n = (i − 1)Ny + j ,

An,n−Ny ϕn−Ny + An,n−1ϕn−1 + Annϕn + An,n+1ϕn+1 + An,n+Ny ϕn+Ny = bn

An,n−Ny = An,n+Ny =
[−1

(�x)2

]
An,n−1 = An,n+1 =

[−1

(�y)2

]
(6.31)

Ann =
[

2

(�x)2
+ 2

(�y)2

]
bn = f (xi , y j)

For each row corresponding to a boundary point, we merely set Ann = 1, bn = 0 to
enforce the boundary condition. BVP 2D Poisson FD.m solves this BVP (solution shown in
Figure 6.3) and is invoked with the code

L = 1; H = 1; fun name = ‘f rD uniform’; num pts = 51;
BVP 2D Poisson FD(fun name,L,H,num pts);

Extending the finite difference method

We next extend the finite difference method to treat BVPs of greater complexity, with
non-Cartesian coordinates and nonuniform grids, von Neumann-type boundary conditions,
multiple fields, time dependence, and PDEs in more than two spatial dimensions. We do so
through the examples in the following sections.

A spherical catalyst pellet 265

R

A B

sid catast eet

eterna id cA(R) = cAS

T (R) = TS

cA(r)

T (r)cte

→

Figure 6.4 Nonisothermal reaction within a catalyst pellet with internal diffusion and thermal con-
duction.

Chemical reaction and diffusion in a spherical catalyst pellet

Consider the case of a nonisothermal reaction A→B occurring in the interior of a spherical
catalyst pellet of radius R (Figure 6.4). We wish to compute the effect of internal heat and
mass transfer resistance upon the reaction rate and the concentration and temperature profiles
within the pellet. If DA is the effective binary diffusivity of A within the pellet, and we have
first-order kinetics, the concentration profile cA(r) is governed by the mole balance

d

dr

[
r2 DA

dcA

dr

]
− r2[k(T)cA] = 0 (6.32)

Similarly, if λ is the effective thermal conductivity of the pellet, the temperature profile
T (r) is governed by the enthalpy balance

d

dr

[
r2λ

dT

dr

]
+ r2(−�H)[k(T)cA] = 0 (6.33)

Neglecting external heat or mass transfer resistance, we have known values of the concen-
tration and temperature at the surface, r = R. At the pellet center, we use the symmetry
conditions dcA/dr = dT/dr = 0. Thus, we solve (6.32) and (6.33) subject to the boundary
conditions

BC 1 cA(R) = cAS T (R) = TS (6.34)

BC 2
dcA

dr

∣∣∣∣
r=0

= 0
dT

dr

∣∣∣∣
r=0

= 0 (6.35)

The temperature dependence of the rate constant is

k(T) = k(TS) exp

[
− Ea

RTS

(
TS

T
− 1

)]
(6.36)

This BVP introduces several new issues: (1) nonCartesian (spherical) coordinates, (2) more
than one coupled PDE, and (3) a BC at r = 0 that specifies the local value of the gradient (a
von Neumann-type boundary condition). Also, experience tells us that when internal mass
transfer resistance is strong, reaction only occurs within a thin layer near the surface over
which the local concentration of A drops rapidly to zero. Thus, we use a computational

266 6 Boundary value problems

grid that is nonuniform, with closer spacing between the points near the surface than deep
within the interior of the pellet.

Actually, for this problem if we assume constant DA, λ, and �H, we can reduce the BVP
to a single equation; however, we return to the question of multiple fields later. Let us divide
(6.33) by −�H ,

d

dr

[
r2 λ

(−�H)

dT

dr

]
+ r2(kcA) = 0 (6.37)

and add (6.37) to (6.32),

d

dr

[
r2 DA

dcA

dr

]
+ d

dr

[
r2 λ

(−�H)

dT

dr

]
= 0 (6.38)

Integrating this equation once yields

r2

[
DA

dcA

dr
+ λ

(−�H)

dT

dr

]
= C1 (6.39)

Dividing by r2 gives

d

dr

[
DAcA + λ

(−�H)
T

]
= C1

r2
(6.40)

From the symmetry boundary condition (6.35), C1 = 0, and a second integration yields

DAcA + λ

(−�H)
T = C2 = DAcAS + λ

(−�H)
TS (6.41)

Thus, there exists a linear relation between cA(r) and T (r),

T (r)− TS = DA(�H)

λ
[cA(r)− cAS] (6.42)

that allows us to solve only a single equation, (6.32).

Dimensionless formulation

We next reduce the number of independent parameters by rephrasing the problem in terms
of the dimensionless quantities

ξ = r

R
ϕA(ξ) = cA(r = ξ R)

cAS
θ (ξ) = T (r = ξ R)

TS
(6.43)

After some manipulation, the BVP takes the dimensionless form

d

dξ

[
ξ 2 dϕA

dξ

]
− ξ 2�2 exp

[
γβ(1− ϕA)

1+ β(1− ϕA)

]
ϕA = 0 (6.44)

ϕA(1) = 1
dϕA

dξ

∣∣∣∣
ξ=0

= 0 (6.45)

There are now only three dimensionless parameters

� = R

√
k(TS)

DA
β = DA(−�H)cAS

λTS
γ = Ea

RTS
(6.46)

� is the Thiele modulus, and represents the strength of internal mass transfer resistance.
When � � 1, diffusion is so fast compared to reaction that mass transfer resistance is

A spherical catalyst pellet 267

negligible. When � ≥ 1, the opposite is true and mass transfer resistance becomes rate-
dominant. β is a measure of the relative importance of the heat of reaction, so that for β

> 1 there is significant internal heating, T (r) > TS, and when β < −1, significant internal
cooling. γ is the dimensionless activation energy, and a large γ means that the reaction rate
is very sensitive to the local temperature.

Finite differences on a nonCartesian, nonuniform grid

To solve (6.44), we use finite differences on a grid 0 < ξ 1< ξ 2 <· · ·<ξN < 1 and require
that at each ξ j, (6.44) be satisfied locally:

d

dξ

[
ξ 2 dϕA

dξ

]∣∣∣∣
ξ j

− ξ 2
j �

2 exp

[
γβ(1− ϕ j)

1+ β(1− ϕ j)

]
ϕ j = 0 (6.47)

where ϕ j = ϕA(ξ j). As we expect strong gradients near ξ = 1 when � ≥ 1, we use a
nonuniform grid with closer grid points near the surface. Defining the mid-points in the
intervals between grid points,

ξ j+1/2 = 1
2 (ξ j + ξ j+1) ξ j−1/2 = 1

2 (ξ j + ξ j−1) (6.48)

we use a central difference approximation for the second derivative,

d

dξ

[
ξ 2 dϕA

dξ

]∣∣∣∣
ξ j

≈
ξ 2

j+1/2

(
dϕA

dξ

∣∣∣∣
ξ j+1/2

)
− ξ 2

j−1/2

(
dϕA

dξ

∣∣∣∣
ξ j−1/2

)

(ξ j+1/2 − ξ j−1/2)
(6.49)

For the first derivatives, we use similar approximations,

dϕA

dξ

∣∣∣∣
ξ j+1/2

≈ ϕ j+1 − ϕ j

ξ j+1 − ξ j

dϕA

dξ

∣∣∣∣
ξ j−1/2

≈ ϕ j − ϕ j−1

ξ j − ξ j−1
(6.50)

to obtain from (6.49) and (6.50) the finite difference approximation

d

dξ

[
ξ 2 dϕA

dξ

]∣∣∣∣
ξ j

≈ A j, j−1ϕ j−1 + A j jϕ j + A j, j+1ϕ j+1 (6.51)

where

A j, j−1 = α
(lo)
j A j, j = −[

α
(lo)
j + α

(hi)
j

]
A j, j+1 = α

(hi)
j

(6.52)

α
(lo)
j = ξ 2

j−1/2

(ξ j − ξ j−1)(ξ j+1/2 − ξ j−1/2)
α

(hi)
j = ξ 2

j+1/2

(ξ j+1 − ξ j)(ξ j+1/2 − ξ j−1/2)

For each interior point j = 2, 3, . . . , N − 1 that does not neighbor a grid point at the
boundary, the nonlinear algebraic equation obtained from (6.44) by finite differences is

f j = A j, j−1ϕ j−1 + A j jϕ j + A j, j+1ϕ j+1 − ξ 2
j �

2 exp

[
γβ(1− ϕ j)

1+ β(1− ϕ j)

]
ϕ j = 0 (6.53)

Treatment of Dirichlet and von Neumann boundary conditions

The boundary conditions (6.45) are of Dirichlet-type (specified ϕ) at the surface and of von
Neumann-type (specified dϕ/dξ) at the center. At the last grid point ξN < 1, we enforce

268 6 Boundary value problems

ϕA(1) = 1 by placing a hypothetical (nonexistent) grid point at ξN+1 = 1 for which we
set ϕN+1 = 1. We then modify (6.53) for j = N to use this value for the nonexistent grid
point,

fN = AN ,N−1ϕN−1 + AN N ϕN + AN ,N+1 − ξ 2
N �2 exp

[
γβ(1− ϕN)

1+ β(1− ϕN)

]
ϕN = 0

(6.54)
We treat the von Neumann boundary condition similarly, applying (6.53) to j = 1, referring
to a nonexistent point at ξ0 = 0,

f1 = A10ϕ0 + A11ϕ1 + A12ϕ2 − ξ 2
1 �2 exp

[
γβ(1− ϕ1)

1+ β(1− ϕ1)

]
ϕ1 = 0 (6.55)

To enforce dϕ/dξ |0 = 0 we might think to set ϕ0 = ϕ1. However, this approximation is
based upon the first-order finite difference

dϕA

dξ

∣∣∣∣
0

= ϕ1 − ϕ0

ξ1
+ O(ξ1) (6.56)

When solving diffusion equations it is common to use second-order accurate approxima-
tions, so that simply setting ϕ0 = ϕ1 is not the preferred way to treat a von Neumann
boundary condition. Rather, we obtain second-order accuracy by fitting a quadratic poly-
nomial to ϕ(ξ) near ξ = 0,

ϕ(ξ) ≈ ϕ0L0(ξ)+ ϕ1L1(ξ)+ ϕ2L2(ξ) L j (ξ) =
2∏

k=0
k �= j

[
ξ − ξk

ξ j − ξk

]
(6.57)

The discretized form of the von Neumann boundary condition is then

dϕA

dξ

∣∣∣∣
0

= 0 = ϕ0L ′0(0)+ ϕ1L ′1(0)+ ϕ2L ′2(0) (6.58)

where

L ′0(0) = −(ξ1 + ξ2)

ξ1ξ2
L ′1(0) = ξ2

ξ1(ξ2 − ξ1)
L ′2(0) = −ξ1

ξ2(ξ2 − ξ1)
(6.59)

For a locally uniform grid with ξ1 = �ξ, ξ2 = 2(�ξ), (6.58) becomes

dϕA

dξ

∣∣∣∣
0

= 0 = −3ϕ0 + 4ϕ1 − ϕ2

2(�ξ)
(6.60)

From this discretized boundary condition, we write the nonexistent grid value as

ϕ0 = a1ϕ1 + a2ϕ2 a j = −[L ′j (0)]/[L ′0(0)] (6.61)

and substitute for ϕ0 in (6.55),

f1 = (A11 + a1 A10)ϕ1 + (A12 + a2 A10)ϕ2 − ξ 2
1 �2 exp

[
γβ(1− ϕ1)

1+ β(1− ϕ1)

]
ϕ1 = 0

(6.62)
Together, (6.53), (6.54), and (6.62) provide a set of N nonlinear algebraic equations for the
N unknowns {ϕ1, ϕ2, . . . , ϕN} that can be solved numerically (e.g. by fsolve). The nonzero

A spherical catalyst pellet 269

elements of the Jacobian in each interior row j = 2, 3, . . . , N − 1 are

Jj, j−1 = A j, j−1 Jj, j+1 = A j, j+1
(6.63)

Jj j = A j j − ξ 2
j �

2g(ϕ j) g(ϕ) = d

dϕ
exp

[
γβ(1− ϕ)

1+ β(1− ϕ)

]

In the first and last rows, the nonzero elements are

J11 = A11 + a1 A10 − ξ 2
1 �2g(ϕ1) J12 = A12 + a2 A10

(6.64)
JN ,N−1 = AN ,N−1 JN N = AN N − ξ 2

N �2g(ϕN)

The linear system comprising (6.63) and (6.64) is thus tridiagonal, and elimination is per-
formed rapidly, even for large N.

Definition of the effectiveness factor

From the solution of the BVP (6.44) and (6.45), we use the resulting concentration and
temperature fields to compute the total rate of reaction within the pellet,

Rtot =
∫ R

0
k(T)cA(r)(4πr2)dr (6.65)

Rewriting this integral in terms of the dimensionless quantities yields

Rtot =
[(

4

3
π R3

)
(kscA,s)

] [
3
∫ 1

0
ϕA(ξ) exp

[
γβ(1− ϕA(ξ))

1+ β(1− ϕA(ξ))

]
ξ 2dξ

]
(6.66)

The product in the first set of square brackets is the total reaction rate if there were no con-
centration (or temperature) gradients within the catalyst particle. We define the effectiveness
factor η from the relation

Rtot =
(

4

3
π R3

)
(kscA,s)η (6.67)

such that

η = 3
∫ 1

0
ϕA(ξ) exp

[
γβ(1− ϕA(ξ))

1+ β(1− ϕA(ξ))

]
ξ 2dξ (6.68)

Numerical solution in MATLAB

catalyst nonisothermal scan.m plots η vs. � for fixed γ and various values of β. For γ = 1,
and �ξ = 0.01 in the interior and �ξ = 0.001 near the surface, the results are shown in
Figure 6.5.

For zero or moderate reaction heating, β ≈ 0, increasing � reduces η. This is easily
understood, as slow diffusion causes a depletion zone of low A concentration to form in the
center of the pellet, where the reaction rate is consequently low. By contrast, if there were
significant heating relative to conduction, β ≥ 1, for � ≈ 1, η would be greater than 1;
i.e., the rates of reaction are higher than in the absence of internal transport resistance. This

270 6 Boundary value problems

1

1

1 2 1 1 1 1 1 1 2

β 1

β

β 1

β 1

iee ds Φ

ee
ct

iv
en

es
s

ac
tr

η

Figure 6.5 Effectiveness factor vs. Thiele modulus for nonisothermal first-order chemical reaction
within a spherical catalyst pellet.

effect arises due to an increase in k(T) by (6.36). In practice, this behavior is not observed,
as solids are better transmitters of heat than mass. Therefore, η < 1 when internal mass
transfer resistance is strong.

Finite differences for a convection/diffusion equation

Above we have considered problems in which transport is solely diffusive. We now consider
the treatment of convection terms that introduce new numerical difficulties. We consider
the simple PDE

∂ϕ

∂t
= −v

∂ϕ

∂z
+ �

∂2ϕ

∂z2
+ s(z, t, ϕ) (6.69)

At steady state and with no source term, this equation becomes

− v
dϕ

dz
+ �

d2ϕ

dz2
= 0 (6.70)

With the Dirichlet boundary conditions

ϕ(0) = ϕ0 ϕ(L) = ϕL (6.71)

the solution for 0≤ z ≤ L is

ϕ(z) = ϕ0 + ez(Pe)/L − 1

e(Pe) − 1
(ϕL − ϕ0) (6.72)

where the dimensionless Peclet number is defined as

Pe = vL

�
= strength of convection

strength of diffusion
(6.73)

This solution is plotted in Figure 6.6 for various Pe values. When Pe� 1, diffusion is dom-
inant and we observe a linear increase from ϕ0 = 0 to ϕL = 1. When Pe � 1, convection

Finite differences for a convection/diffusion equation 271

1

1

2

2

1

ϕ

e 1

e 1

e 1

e 1

increasin e

Figure 6.6 Analytical solution of a 1-D convection/diffusion equation at various Peclet numbers.

is dominant, and the flow (which is from left to right) “pushes” the incoming fluid at z = 0
downwind to the right and causes a sharp increase in ϕ near the exit outflow at z = 1.

Central difference scheme (CDS)

To solve this problem numerically, we apply the finite difference method for a grid of points,
0 < z1 < z2 <· · ·< zN < L, and require the differential equation to be satisfied locally at
each point,

− v
dϕ

dz

∣∣∣∣
z j

+ �
d2ϕ

dz2

∣∣∣∣
z j

= 0 (6.74)

For simplicity, we place the grid points uniformly with �z = L/(N + 1), z j = j(�z). For
the second derivative, we have the approximation

d2ϕ

dz2

∣∣∣∣
z j

≈ ϕ j−1 − 2ϕ j + ϕ j+1

(�z)2
(6.75)

For the first derivative, we consider two alternatives. In the CDS, we choose the more
accurate approximation

dϕ

dz

∣∣∣∣
(CDS)

z j

= ϕ j+1 − ϕ j−1

2(�z)
+ O[(�z)2] (6.76)

which yields the linear equation for grid point j,

− v

[
ϕ j+1 − ϕ j−1

2(�z)

]
+ �

[
ϕ j−1 − 2ϕ j + ϕ j+1

(�z)2

]
= 0 (6.77)

We multiply by −2(�z)2/� to obtain

v(�z)

�
[ϕ j+1 − ϕ j−1]− 2ϕ j−1 + 4ϕ j − 2ϕ j+1 = 0 (6.78)

272 6 Boundary value problems

1

2

1

1

1 1

1

1

e c 1 e 1

e c 1 e

e c e 2 e c 1 e 1

e c 21 e 11

e c 1 e 1

ϕ

1

−

1

1

ϕ

ϕ
ϕ

ϕ

2

ϕ

Figure 6.7 CDS solution of a 1-D convection/diffusion equation for various values of the local Peclet
number below and above the critical value of 2 (N = 50).

We next define the local Peclet number

Peloc ≡ v(�z)

�
= (Pe)

(
(�z)

L

)
= Pe

N + 1
(6.79)

to write the CDS equation for grid point j as

− (Peloc + 2)ϕ j−1 + 4ϕ j + (Peloc − 2)ϕ j+1 = 0 (6.80)

With α ≡ Peloc − 2, β ≡ Peloc + 2, the CDS linear system is

4 α

−β 4 α

−β 4
. . .

. . .
. . . α

−β 4

ϕ1

ϕ2
...

ϕN−1

ϕN

 =

βϕ0

0
...
0

−αϕ1

 (6.81)

While for all Peloc ≥ 0 we have β > 0, α changes sign at Peloc = 2. We expect some
qualitative change in the solution when this occurs. The CDS solution is plotted in Figure 6.7
for various values of Peloc for a grid of 50 points. When Peloc >2, the numerical solution
exhibits oscillations that are not present in the true solution. Also, as this equation models the
convection and diffusion of a density field, it is physically unrealistic for ϕ to take negative
values, but it does so in the numerical solution when Peloc > 2. To remove such spurious
oscillations, we can make the grid finer, thus decreasing Peloc for fixed Pe. However, often
we do not know a priori how small to make the grid to avoid the oscillations, whose effect
on the convergence of numerical algorithms may be severe.

Finite differences for a convection/diffusion equation 273

Upwind difference scheme (UDS)

We now show that it is possible to remove the oscillations by using a different approximation
for the first derivative in the convection term, an upwind difference, defined in this case for
v > 0 (flow from left to right) as

dϕ

dz

∣∣∣∣
(UDS)

z j

= ϕ j − ϕ j−1

�z
+ O[(�z)] (6.82)

We take here a one-sided difference, and thus this formula is not as accurate, for finite �z,
as the central difference approximation. The UDS equation for grid point j is

− v

[
ϕ j − ϕ j−1

�z

]
+ �

[
ϕ j−1 − 2ϕ j + ϕ j+1

(�z)2

]
= 0 (6.83)

Multiplying by − (�z)2/L and defining Peloc as before yields

− (Peloc + 1)ϕ j−1 + (2+ Peloc)ϕ j − ϕ j+1 = 0 (6.84)

Defining β ≡ Peloc + 2 and γ ≡ Peloc + 1, the UDS linear system is

β −1
−γ β −1

−γ β −1

−γ
. . .

. . .
. . . β −1

−γ β

ϕ1

ϕ2

ϕ3
...

ϕN−1

ϕN

=

γ ϕ0

0
0
...
0
ϕL

(6.85)

Note that for all Peloc ≥ 0, β > 0, γ > 0, and that the matrix elements have the same signs
as they do in the CDS system when Peloc < 2. As Figure 6.8 shows, the UDS solution
remains well-behaved for all values of Peloc.

Even though the UDS equations use a less accurate approximation for the convection
derivative than the CDS equations, they are safer and better behaved. If too few grid points
are used with the CDS method, large oscillations appear that can be disastrous with nonlinear
source terms, but with the UDS method, the effect of too large a �z is merely a loss in
accuracy.

Why does upwind differencing work?

To see why upwind differencing works, we relate the upwind and central difference first-
derivative approximations through the identity

ϕ j − ϕ j−1

�z
= ϕ j+1 − ϕ j−1

2(�z)
+

[
ϕ j − ϕ j−1

�z
− ϕ j+1 − ϕ j−1

2(�z)

]
dϕ

dz

∣∣∣∣
(UDS)

z j

= dϕ

dz

∣∣∣∣
(CDS)

z j

+
[

2ϕ j − 2ϕ j−1

2(�z)
− ϕ j+1 − ϕ j−1

2(�z)

]
(6.86)

dϕ

dz

∣∣∣∣
(UDS)

z j

= dϕ

dz

∣∣∣∣
(CDS)

z j

+
(

�z

2

)[−ϕ j−1 + 2ϕ j − ϕ j+1

(�z)2

]

274 6 Boundary value problems

1 1

1 1

1 1

1

e c 1 e 1

e c 1 e 1

ϕ
1

ϕ

ϕ

e c 1 e e c 21 e 11

e c e 2 e c 1 e 1

2

ϕ

2

ϕ

2

ϕ

2

Figure 6.8 UDS solution of 1-D convection/diffusion equation at various Peclet numbers (N = 50).

Recognizing the factor within the square brackets as an approximation of−d2ϕ/d2z|z j , we
have the relation

dϕ

dz

∣∣∣∣
(UDS)

z j

= dϕ

dz

∣∣∣∣
(CDS)

z j

−
(

�z

2

)
d2ϕ

dz2

∣∣∣∣
z j

(6.87)

Thus, the UDS discretization of the equation

v
dϕ

dz

∣∣∣∣
(UDS)

z j

− �
d2ϕ

dz2

∣∣∣∣
z j

= 0 (6.88)

is equivalent to a CDS discretization with “extra” diffusion,

v

{
dϕ

dz

∣∣∣∣
(CDS)

z j

−
(

�z

2

)
d2ϕ

dz2

∣∣∣∣
z j

}
− �

d2ϕ

dz2

∣∣∣∣
z j

= 0

(6.89)

v
dϕ

dz

∣∣∣∣
(CDS)

z j

−
[
� + v(�z)

2

]
d2ϕ

dz2

∣∣∣∣
z j

= 0

Upwind differencing is equivalent to adding additional numerical diffusion, or artificial
diffusion, to obtain an effective diffusion constant

�eff = � + v(�z)

2
(6.90)

such that the effective local Peclet number is always less than 2:

Peloc,eff = v(�z)

�eff
= v(�z)

� + v(�z)/2
= 2

1+ 2/Peloc
(6.91)

We could achieve the same effect if we used the CDS equations and increased the effec-
tive diffusion constant by a sufficient amount to avoid oscillations. In multiple spatial

Finite differences for a convection/diffusion equation 275

dimensions, it is common to add numerical diffusion only in the streamline direction, to
obtain an effective anisotropic diffusion tensor,

� = � I + �num
vvT

|v|2 (6.92)

For an in-depth treatment of methods for BVPs with strong convection, see Finlayson
(1992).

Numerical solution of the HJB equation of optimal control

We now are in a position to analyze the numerical solution of the HJB equation from optimal
control (Chapter 5) to minimize the cost functional

F
[
u(t); x[0]

] = ∫ tH

t0

σ (s, x(s), u(s))ds + π (x(tH)) (6.93)

for a system governed by ẋ = f (t, x, u). In terms of the backward time τ = tH − t, we
solve the HJB equation

∂ϕ

∂τ
= minu(τ,x)[σ (tH − τ, x, u)+∇ϕ · f (tH − τ, x, u)] (6.94)

with the initial condition ϕ(0, x) = π(x). The optimal value of the cost functional
F[u(t); x[0]] is ϕ

(
τ = tH − t0, x[0]

)
and the “best” feedback control law for the system

is ucon(x) = u(τ = tH − t0, x). In Chapter 5 we solved the HJB equation for a simple 1-D
control problem, and are now in a position to explain the choice of discretization used
there. We now recognize that (6.94) is a reaction/convection equation with σ taking the
role of a source term and f taking the role of −v. Thus, at each point in the calcula-
tion, we should examine the local sign of f and choose the appropriate upwind one-sided
difference. This is in fact what was done in the example of Chapter 5, but without expla-
nation. In practice, it is also common to add an artificial diffusion term ε∇2ϕ to the HJB
equation to obtain a “viscosity solution.” Diffusion makes dynamic programming more
robust as it smooths out any discontinuities in the dynamics, cost functional, or control
input.

When solving (6.94), the spatial domain should be extended to very large positive and
negative values of x to limit any corruption of the solution in the region of interest by the
boundary condition employed at the limits. To see how one might treat the boundaries, refer
again to the example in Chapter 5.

Characteristics and types of PDEs

We see from our discussion of the 1-D convection/diffusion equation that the qualitative
nature of an equation, and of its numerical solution, can change as we vary the parameters.
These changes are related to the nature of how information about the field is propagated by
the differential equation in space and time. The importance of information flow is reflected
in a common naming convention for second-order PDEs. As this nomenclature is employed
often in the literature, we briefly review it here.

276 6 Boundary value problems

Consider the general form of a second-order differential equation,

a
∂2ϕ

∂t2
+ b

∂2ϕ

∂t∂z
+ c

∂2ϕ

∂z2
+ f

(
t, z, ϕ,

∂ϕ

∂t
,
∂ϕ

∂z

)
= 0 (6.95)

For example, the time-varying 1-D convection/diffusion equation

∂ϕ

∂t
− �

∂2ϕ

∂z2
+

[
v
∂ϕ

∂z

]
= 0 (6.96)

in the limit of Pe � 1 takes the form above with

a = 1 b = 0 c = −� (6.97)

In the limit Pe � 1, b2 − 4ac < 0, and the PDE is said to be parabolic. By contrast, in the
limit Pe � 1, we have a PDE dominated by convection,

∂ϕ

∂t
+

[
v
∂ϕ

∂z

]
= 0 (6.98)

Differentiating once with respect to time yields

∂2ϕ

∂t2
+ v

∂2ϕ

∂t∂z
= 0 ⇒

a = 1
b = v

c = 0
(6.99)

Now, b2 − 4ac > 0, and the equation is said to be hyperbolic. Thus, by changing Pe we
alter the type of the PDE, and as we see below, this changes significantly the way the field
is propagated.

The steady-state diffusion equation

−�
∂2ϕ

∂z2
= 0 (6.100)

has the general form of a second-order PDE with

a = 0 b = 0 c = −� (6.101)

Here, b2 − 4ac = 0 and the equation is said to be elliptic.
Consider some point P at position zp and time tp. What are the set of points in space-time

whose field values influence the field value at (P) and the set of points in space-time whose
field values are influenced in turn by the value at (P)? As a concrete example, consider the
1-D convection equation

∂ϕ

∂t
+

[
v
∂ϕ

∂z

]
= 0 (6.102)

which describes purely convective transport of ϕ in the direction of increasing z for v > 0.
At future times t > tp, P only influences points (t, z) that are downstream with zp < z < zp +
v(t − tp). Similarly, only past points (t, z) that are upstream with zp − v(tp − t) < z < zp

influence P. The space-time diagram is shown in Figure 6.9. The two lines that separate the
regions of influence from those of no influence are the characteristic lines for P.

We now relate the characteristic lines to the coefficients a, b, c in (6.95). Let us consider
the point P and a point Q on one of its characteristic lines (Figure 6.9). If P and Q are

Finite differences for a convection/diffusion equation 277

t

rein
inenced

rein tat
inences caracteristic ine 1

se

caracteristic ine 2
se v

t

t

tis rein neiter
inences nr

is inenced

tis rein neiter
inences nr

is inenced

Figure 6.9 Space-time diagram of the 1-D convection equation showing characteristic lines.

infinitesimally close together,

zq = zp + dz tq = tp + dt (6.103)

we use a truncated Taylor expansion to relate the field values at P and Q,

ϕq − ϕp = dt
∂ϕ

∂t

∣∣∣∣
(P)

+ dz
∂ϕ

∂z

∣∣∣∣
(P)

(6.104)

We apply similar expansions to the first derivatives,

∂ϕ

∂t

∣∣∣∣
(Q)

− ∂ϕ

∂t

∣∣∣∣
(P)

= dt
∂2ϕ

∂t2

∣∣∣∣
(P)

+ dz
∂2ϕ

∂z∂t

∣∣∣∣
(P)

(6.105)
∂ϕ

∂z

∣∣∣∣
(Q)

− ∂ϕ

∂z

∣∣∣∣
(P)

= dt
∂2ϕ

∂t∂z

∣∣∣∣
(P)

+ dz
∂2ϕ

∂z2

∣∣∣∣
(P)

We now combine these two expansions of the first derivatives with the condition that the
differential equation be satisfied at P,

a
∂2ϕ

∂t2

∣∣∣∣
(P)

+ b
∂2ϕ

∂t∂z

∣∣∣∣
(P)

+ c
∂2ϕ

∂z2

∣∣∣∣
(P)

+ f(P) = 0 (6.106)

to obtain the linear system

dt dz

dt dz
a b c

∂2ϕ

∂t2

∣∣∣∣
(P)

∂2ϕ

∂t∂z

∣∣∣∣
(P)

∂2ϕ

∂z2

∣∣∣∣
(P)

=

∂ϕ

∂t

∣∣∣∣
(Q)

− ∂ϕ

∂t

∣∣∣∣
(P)

∂ϕ

∂z

∣∣∣∣
(Q)

− ∂ϕ

∂z

∣∣∣∣
(P)

− f(P)

 (6.107)

278 6 Boundary value problems

Now, if Q were either within the interior of the region of influence or somewhere outside
of it, then small changes in the first derivatives would correspond to small changes in the
second derivatives. If Q is on a characteristic line, however, even an infinitesimal change
in the first derivatives may have a finite effect upon the second derivatives, requiring the
matrix of (6.107) to be singular,

det

dt dz

dt dz
a b c

 = 0 = c(dt)2 + b(dz)(dt)+ a(dz)2 (6.108)

Dividing by (dt)2, we obtain the slope of a characteristic line,

dz

dt
= b ±√

b2 − 4ac

2a
(6.109)

The sign of b2 − 4ac controls the number of real characteristic lines. For the 1-D time-
varying convection equation, we find as expected,

dz

dt
= v ±

√
v2 − 4(1)(0)

2(1)
= v ± v

2
= v, 0 (6.110)

Thus, we distinguish the three characteristic types of second-order PDEs.

Hyperbolic equations, b2 − 4ac > 0

Two real characteristic lines exist; therefore, there exist distinct regions of space-time that
are influenced, or not influenced, by each point P. Examples of hyperbolic equations are, of
course, the 1-D convection equation, and also the wave equation

∂2ϕ

∂t2
− ∂2ϕ

∂z2
= 0 (6.111)

which has eigenfunctions of the form of traveling waves,[
∂2

∂t2
− ∂2

∂z2

]
ei(kz−ωt) = (k2 − ω2)ei(kz−ωt) (6.112)

In hyperbolic equations, information about the field is transmitted as traveling waves, and
the effects of numerical error usually appear as oscillations.

Elliptic equations, b2 − 4ac < 0

Here, there exist no real characteristic lines and no distinction can be made between regions
of influence and no influence. In such problems, the value of the field at each point affects the
value of the field at all other points. As an example, consider the 2-D steady-state diffusion
equation

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= 0 (6.113)

that, with a = 0, b = 0, c = 1 has b2 − 4ac = −4.
In elliptic problems, information about the field is transmitted diffusively in all directions,

and thus numerical error is “smoothed out.”

Modeling a tubular chemical reactor with dispersion 279

z = 0 z = L

A + B → C rR1 = k1 cA cB

rR2 = k2 cB cCC + B → D

inet tet

cte cncentratins cj(z)

Figure 6.10 Tubular chemical reactor with dispersion.

Parabolic equations, b2 − 4ac = 0

Here, there exists only one real characteristic line. Consider the time-varying 1-D diffusion
equation

∂ϕ

∂t
= �

∂2ϕ

∂z2
(6.114)

that, with a = 0, b = 0, c = � has b2 − 4ac = 0. The slope of the single characteristic
line is indeterminate as a = 0, and thus corresponds to a vertical line running through P in
the space-time diagram. Therefore, we find that each point P influences all points in space
at all future times, and is influenced in turn by the field values at all spatial positions at all
past times. Past numerical errors therefore are smoothed out with increasing time.

Modeling a tubular chemical reactor with dispersion; treating
multiple fields

Many problems of interest involve multiple fields, each with its own governing equation.
Consider a tubular chemical reactor of length L (Figure 6.10) with the reactions A+ B → C
and B+ C → D. A fluid medium comprising initially only A and B flows through the reactor
with a mean axial velocity vz . In addition to convection, we also have a diffusive-like mixing,
known as dispersion, due to the coupling of diffusion to inhomogeneities in the velocity
field. We employ a common dispersion coefficient D as an effective axial diffusivity for
each species. Dispersion is usually of minor importance compared with convection, with
high values observed for the Peclet number

Pe = vz L

D
(6.115)

The concentration fields of A, B, C, and D at steady state are governed by the coupled
set of PDEs

∂cA

∂t
= − vz

∂cA

∂z
+ D

∂2cA

∂z2
− k1cAcB = 0

∂cB

∂t
= − vz

∂cB

∂z
+ D

∂2cB

∂z2
− k1cAcB − k2cBcC = 0

(6.116)
∂cC

∂t
= − vz

∂cC

∂z
+ D

∂2cC

∂z2
+ k1cAcB − k2cBcC = 0

∂cD

∂t
= − vz

∂cD

∂z
+ D

∂2cD

∂z2
+ k2cBcC = 0

280 6 Boundary value problems

At the reactor inlet and outlet we use Danckwerts’ boundary conditions. At the inlet, the
flux of species j = A, B, C, D entering the reactor is vzc j0, but once inside the reactor and
in the presence of dispersion, the flux is vzc j − D(dc j/dz). Balancing these two fluxes at
z = 0 yields the inlet boundary condition

vz[c j (0)− c j0]− D
dc j

dz

∣∣∣∣
0

= 0 (6.117)

When D → 0, c j (0) = c j0, but when D →∞, this boundary condition correctly enforces
dc j/dz|0 = 0. If the reaction stops once the stream leaves the reactor, the concentration
profile becomes uniform, and we use the outlet boundary condition

dc j

dz

∣∣∣∣
L

= 0 (6.118)

Solution by upwind finite differences

We solve the coupled set of PDEs (6.116) with the inlet boundary conditions (6.117)
and outlet boundary conditions (6.118) using upwind finite differencing. We place
a grid of N uniformly-spaced points 0 < z1 < z2 < · · · < zN < L , zk = k(�z), �z
= L(N + 1)−1 and write each PDE of (6.116) as

0 = − vz
dc j

dz
+ D

d2c j

dz2
+ s j [{cm(z)}] (6.119)

where {cm(z)} denotes the set of local concentrations, and the source terms for each field
are

sA[{cm(z)}] = −k1cAcB sB[{cm(z)}] = −k1cAcB − k2cBcC
(6.120)

sC[{cm(z)}] = k1cAcB − k2cBcC sD[{cm(z)}] = k2cBcC

Applying upwind finite differences, we obtain for each grid point zk and each species
j = A, B, C, D a nonlinear algebraic equation

0 = − vz

[
c j (zk)− c j (zk−1)

�z

]
+ D

[
c j (zk−1)− 2c j (zk)+ c j (zk+1)

(�z)2

]
+ s j [{cm(zk)}]

(6.121)
Collecting terms, we have

0 = αloc j (zk−1)+ αmidc j (zk)+ αhic j (zk+1)+ s j [{cm(zk)}] (6.122)

with the coefficients

αlo = vz

�z
+ D

(�z)2
αmid = − vz

�z
− 2D

(�z)2
αhi = D

(�z)2
(6.123)

We enforce the boundary conditions by removing the nonexistent unknowns c j (z0) and
c j (zN+1) through the discretizations of (6.117) and (6.118),

0 = vz

[
c j (z0)− c(in)

j0

]− D

[
c j (z1)− c j (z0)

�z

]
c j (zN+1) = c j (zN) (6.124)

Modeling a tubular chemical reactor with dispersion 281

cee cee

1

1

2

1

1

2
1 1 21

n 112 n 112
1 2

Figure 6.11 Effect of stacking on the sparsity pattern of the Jacobian for a BVP involving the 1-D
transport of four fields, with local coupling of each field through the source terms. A grid of 50 points
is used to discretize the PDEs. Plot generated by BVP field JPattern.m.

From the inlet boundary condition, we obtain

c j (z0) = Pelocc j0 + c j (z1)

1+ Peloc
Peloc = vz z1

D
(6.125)

Thus, for k = 1 we have the modified version of (6.122),

0 =
[
αmid + αlo

1+ Peloc

]
c j (z1)+ αlo Pelocc j0

1+ Peloc
+ αhic j (z2)+ s j [{cm(z1)}] (6.126)

Similarly, for k = N we have the modified version of (6.122),

0 = αloc j (zN−1)+ [αmid + αhi]c j (zN)+ s j [{cm(zN)}] (6.127)

We now stack the set of all unknowns into a single state vector using a labeling system
that assigns to each unknown a unique integer. Equation (6.122) forms a set of nonlinear
algebraic equations with a sparse Jacobian, and thus to avoid the fill-in problems discussed
in Chapter 1, we make the bandwidth as small as possible (i.e., cluster the nonzero values
around the principal diagonal). We see that (6.122) relates c j (zk), the values of the same
field cj at the neighboring points, c j (zk−1) and c j (zk+1), and the values of all other fields
at the same point, cm �= j (zk). Thus, from the two ways to stack the state vector,

Scheme I xT = [cA(z1) cA(z2) · · · cA(zN) cB(z1) · · · cB(zN) · · · cD(zN)]
(6.128)

Scheme II xT = [cA(z1) cB(z1) cC(z1) cD(z1) cA(z2) cB(z2) · · · cC(zN) cD(zN)]

we choose scheme II, as it yields a Jacobian with a smaller bandwidth (Figure 6.11).
We thus assign to c j (zk) the label n = Nf(k − 1)+ j, Nf = 4 being the number of
fields.

When coding a BVP with multiple fields, it is easiest to write the routines to use, as much
as is possible, natural names and indices, e.g. c j (zk), and to rely upon routines to stack and
unstack the state vector and to place the matrix and vector elements in the appropriate
positions. This approach is used in tubular reactor 2rxn SS.m. Sample results are shown

282 6 Boundary value problems

1

2

1

2 1

se
ci

es
 c

nc
en

tr
at

in
s

A
B

Figure 6.12 Steady-state concentration profiles in a tubular reactor (with reactions – (A + B →
C, B + C → D)).

in Figure 6.12 for a simulation with the parameters

L = 10 vz = 1 D = 10−4 k1 = k2 = 1
(6.129)

cA0 = cB0 = 1 cC0 = cD0 = 0

Time-dependent simulation

We now simulate the dynamics of this tubular reactor by retaining the time derivative in
each PDE of (6.116). Then, instead of a nonlinear algebraic equation (6.122), we obtain for
each c j (zk) an ODE

dc j (zk)

dt
= αloc j (zk−1)+ αmidc j (zk)+ αhic j (zk+1)+ s j [{cm(zk)}] (6.130)

As discussed in Chapter 4, discretized PDEs yield ODE systems that are very stiff; therefore,
to avoid a very small time step, an implicit method such as the Crank–Nicholson method,
ode23s, or ode15s should be used. Using ode15s, tubular reactor 2rxn dyn sim.m sim-
ulates the reactor start-up dynamics. Initially the reactor is at steady state with an input
stream containing only A, and then B is introduced to start the reaction (Figure 6.13).

Numerical issues for discretized PDEs with more than
two spatial dimensions

Consider a BVP involving the Poisson equation in three dimensions

−∇2ϕ = −∂2ϕ

∂x2
− ∂2ϕ

∂y2
− ∂2ϕ

∂z2
= f (x, y, z) (6.131)

Discretized PDEs with more than two spatial dimensions 283

2

1

1

1

A

2

1

1

2

1

B

1

2

1

1

arrws sw
evtin

 crves wit
increasin

tie

Figure 6.13 Dynamic concentration profiles during reactor start-up. Solid lines show the initial profile
and the final profile at a time twice that of the mean residence time. Dashed lines show profiles at
every 0.2 of the mean residence time.

on 0 ≤ x ≤ L , 0 ≤ y ≤ W, 0 ≤ z ≤ H subject to the Dirichlet boundary conditions

BC 1 ϕ(0, y, z) = 0 0 ≤ y ≤ W 0 ≤ z ≤ H
BC 2 ϕ(L , y, z) = 0 0 ≤ y ≤ W 0 ≤ z ≤ H
BC 3 ϕ(x, 0, z) = 0 0 ≤ x ≤ L 0 ≤ z ≤ H
BC 4 ϕ(x, W, z) = 0 0 ≤ x ≤ L 0 ≤ z ≤ H
BC 5 ϕ(x, y, 0) = 0 0 ≤ x ≤ L 0 ≤ y ≤ W
BC 6 ϕ(x, y, H) = 0 0 ≤ x ≤ L 0 ≤ y ≤ W

(6.132)

We set a uniform grid of points over the domain and substitute finite difference approx-
imations for each second derivative to obtain for each interior point (xi, yj, zk) a linear
equation

−ϕ(xi−1, y j , zk)+ 2ϕ(xi , y j , zk)− ϕ(xi+1, y j , zk)

(�x)2

+ −ϕ(xi , y j−1, zk)+ 2ϕ(xi , y j , zk)− ϕ(xi , y j+1, zk)

(�y)2

+ −ϕ(xi , y j , zk−1)+ 2ϕ(xi , y j , zk)− ϕ(xi , y j , zk+1)

(�z)2
= f (xi , y j , zk) (6.133)

Nx, Ny, Nz are the numbers of grid points in the x, y, and z directions respectively. We stack
all unknowns in a single vector of dimension NxNyNz by assigning to each grid point (xi, yj,
zk) the unique label

n = (k − 1)Nx Ny + (i − 1)Ny + j (6.134)

284 6 Boundary value problems

1

1

1

1

1 2

1 11 12 1 1 1

nn A

nn

ne
r

 n
n

er
 e

ee
nt

s

Figure 6.14 Numbers of nonzero elements in the 3-D diffusion matrix A before elimination and in
the upper triangular matrix U obtained by LU decomposition as functions of N.

such that

ϕ(xi , y j , zk) = ϕn ϕ(xi , y j±1, zk) = ϕn±1
(6.135)

ϕ(xi±1, y j , zk) = ϕn±Ny ϕ(xi , y j , zk±1) = ϕn±Nx Ny

We then have the linear equation for each interior grid point

An,n−Nx Ny ϕn−Nx Ny + An,n−Ny ϕn−Ny + An,n−1ϕn−1 + Annϕn

+ An,n+1ϕn+1 + An,n+Ny ϕn+Ny + An,n+Nx Ny ϕn+Nx Ny = fn (6.136)

with nonzero elements

An,n−Nx Ny = An,n+Nx Ny = − (�z)−2

An,n−Ny = An,n+Ny = − (�x)−2

(6.137)
An,n−1 = An,n+1 = − (�y)−2

Ann = 2[(�x)−2 + (�y)−2 + (�z)−2]

This yields a positive-definite system Ax = f , with a matrix of bandwidth NxNy, containing
seven nonzero elements per row (7NxNyNz in total).

In Figure 6.14, we plot as a function Nx = Ny = Nz = N the numbers of nonzero
elements in the original matrix A and the upper triangular matrix U obtained by Gaus-
sian elimination. Even at very small N, the number of nonzero elements increases signifi-
cantly during Gaussian elimination, due to the problem of fill-in discussed in Chapter 1
(Figure 6.15). For all but very small 3-D grids, it is impossible to perform Gaussian elim-
ination because we would run out of available memory. Even without fill-in, the number
of nonzero elements in A, 7N3, makes it difficult to store A, even in sparse-matrix format,
when N is large. Thus, although solving a BVP in three dimensions is not any different
conceptually than solving are in one or two dimensions, we must solve the resulting linear
systems with alternative methods.

Discretized PDEs with more than two spatial dimensions 285

1

1

2

1

1

2

a

1 1 2 1 1 2
n 12 n 1

Figure 6.15 Sparsity patterns of a 3-D diffusion operator matrix (a) before and (b) after Gaussian
elimination for N = 6.

We consider here iterative methods to solve Ax = b that begin at an initial guess x[0]

and generate a sequence x[1], x[2], . . . that (hopefully) converges to a solution. We have
encountered a few such methods earlier in this text.

The Jacobi, Gauss–Seidel, and successive
over-relaxation (SOR) methods

In Chapter 3, we examined the Jacobi method for diagonally-dominant A,

Bx[k+1] = b + (B − A)x[k] (6.138)

where B contains only the diagonal values of A. Thus, solving (6.138) requires no elimina-
tion. Some improvement in the convergence rate is obtained in the Gauss–Seidel method,
where again we apply (6.138) but now with B being either the upper-triangular, B = triu(A),
or lower-triangular, B = tril(A), part of A. The SOR method is a more efficient modification
of the Gauss–Seidel method, in which we partition A as

A =

D11

D22

D33

. . .

DN N

−−−−−−−−−
DA

+

0
L21 0
L31 L32 0

...
...

. . .
. . .

L N1 L N2 L N3 . . . 0

−−−−−−−−−
L A

+

0 U12 U13 . . . U1N

0 U23 . . . U2N

0 . . . U3N

. . .
...
0

−−−−−−−−−
UA

(6.139)

286 6 Boundary value problems

In the lower-SOR method, we extract the lower-triangular part of A and divide the diagonal
values by an over-relaxation parameter ω > 1,

B = 1

ω
DA + L A 1 < ω < 2 (6.140)

to obtain an update system(
ω−1 DA + L A

)
x[k+1] = b + [

(ω−1 − 1)DA −UA

]
x[k] (6.141)

that is solved by forward substitution. In the upper-SOR method, we select

B = 1

ω
DA +UA 1 < ω < 2 (6.142)

to obtain the update system(
ω−1 DA +UA

)
x[k+1] = b + [

(ω−1 − 1)DA − L A

]
x[k] (6.143)

which is solved by backward substitution. For a positive-definite matrix, SOR converges
for all 1 < ω < 2. Some tuning of ω is required to optimize the rate of convergence
(1.9 being a good initial guess); however, the convergence rate can be made somewhat
less sensitive to the choice of ω if we alternate lower and upper-SOR steps, yielding the
symmetric SOR (SSOR) method. We do not consider these methods in further detail, because
the methods described below are preferred and are implemented directly in MATLAB. For
further discussion, consult Stoer & Bulirsch (1993) and Quateroni et al. (2000).

The conjugate gradient method for positive-definite matrices

In Chapter 5, we considered the conjugate gradient method which solves Ax = b by mini-
mizing the quadratic cost function

F(x) = 1

2
xT Ax − bTx (6.144)

in no more than N steps. At each iteration, we need only compute a single matrix-vector
product; therefore, no elimination occurs and we take full advantage of sparsity. The method
is implemented in MATLAB as pcg. It can be used for A stored in either full- or sparse-matrix
format,

A = [2 -1 0 0; -1 2 -1 0; 0 -1 2 -1; 0 0 -1 2];
b = [1;1;1;1];
x = pcg(A,b),
pcg converged at iteration 2 to a solution with relative residual 0
x =

2
3
3
2

Discretized PDEs with more than two spatial dimensions 287

It can also be used without even having to store A in memory if we supply a rou-
tine that returns the vector Av for an input vector v. Such use of pcg is demonstrated in
BVP 2D Poisson FD cg.m.

The generalized minimum residual (GMRES) Krylov subspace method

The efficiency of the conjugate gradient method leads us to consider the existence of methods
that solve linear systems in a similar manner but without requiring positive-definiteness.
Such methods exist and are invoked in MATLAB by the keywords bicg, bicgstab, and gmres.
We present here a brief discussion of gmres.

We wish to solve Ax = b, but, as A is no longer required to be positive-definite, we
introduce the term residual for the vector that we have previously called the steepest descent
direction, r = Ax − b. Given an initial guess x[0], the initial residual is

r [0] = b − Ax[0] (6.145)

We wish to generate a sequence x[1], x [2], . . . such that the sequence of residual norms
‖r [1]‖, ‖r [2]‖, . . . converges to zero. The GMRES method looks for new solution estimates
that minimize the residual among the members of a Krylov subspace of r[0], that at order
k + 1 is

Kk+1
(
r [0]; A

) ≡ span
{
r [0], Ar [0], A2r [0], . . . , Akr [0]

}
(6.146)

This subspace is sufficiently large to include all searches based on taking some step a[k] in
the residual direction at each iteration,

x[k+1] = x[k] + a[k]r [k] (6.147)

This follows from the relation among residuals at successive iterations,

b − Ax[k+1] = b − Ax[k] − a[k] Ar [k]

(6.148)
r [k+1] = (

I − a[k] A
)
r [k]

from which we obtain

r [k] =
k−1∑
j=0

(
I − a[j] A

)
r [j] (6.149)

We thus find that r [k] ∈ Kk+1(r [0]; A). It also follows that

x[k] = x[0] + p[k] p[k] ∈ Kk

(
r [0]; A

)
(6.150)

In GMRES, we compute successive estimates

x[1] = x[0] + p[1] p[1] = α10r [0]

x[2] = x[0] + p[2] p[2] = α20r [0] + α21 Ar [0] (6.151)
x[3] = x[0] + p[3] p[3] = α30r [0] + α31 Ar [0] + α32 A2r [0]

by finding the p[k] ∈ Kk(r [0]; A) that minimizes the 2-norm of the residual,∥∥r [k]
∥∥2

2
= ∥∥b − A(x[0] + p[k])

∥∥2

2
≤ ∥∥b − A(x[0] + p)

∥∥2

2
∀p ∈ Kk

(
r [0]; A

)
(6.152)

288 6 Boundary value problems

This is done by storing at iteration k an N×k matrix V[k] whose column vectors are
orthonormal basis vectors of Kk(r [0]; A). We then can write any p ∈ Kk(r [0]; A) as the
linear combination

p = V [k]c c ∈ �k (6.153)

We find p[k] = V [k]c[k] by minimizing the quadratic cost function

F(c) = ∥∥b − A
(
x[0] + V [k]c

)∥∥2

2
= ∥∥r [0] − AV [k]c

∥∥2

2
(6.154)

It may be shown that the GMRES method converges in at most N iterations; however, the
memory required to store V[k] for large k is considerable, and the GMRES method becomes
unwieldy after a few iterations. In practice, we restart the method every m < N steps, so
that V [k] never becomes larger than an N × m matrix.

To demonstrate gmres, we start with the matrix A used to demonstrate pcg above, and
add 1 to the (1, 4) element, destroying its symmetry. While this is a problem for pcg, it is
not for gmres.

A2 = A; A2(1,4) - A(1,4) + 1;
x = pcg(A2,b), % this should not work
pcg stopped at iteration 4 without converging to the desired tolerance
1e-006 because the maximum number of iterations was reached.
The iterate returned (number 4) has relative residual 0.16
x =

0.6356
2.1460
2.6616
1.8970

x = gmres(A2,b), % but this should work
gmres converged at iteration 4 to a solution with relative residual 1.2e-015

x =
0.6667
2.0000
2.3333
1.6667

To restart gmres every restart iterations, use x = gmres(A,b,restart).

The use of preconditioners

The conjugate gradient and GMRES methods converge in at most N iterations, but is it
possible for them to converge in significantly less than N iterations? Consider for the linear
system Ax = b the first conjugate gradient or GMRES update

x[1] = x[0] + a[0]r [0] r [0] = b − Ax[0] (6.155)

Let W be a matrix whose columns are eigenvectors of A and � be the diagonal matrix
containing the eigenvalues of A, AW = �W. Let us assume that A is diagonalizable, such

Discretized PDEs with more than two spatial dimensions 289

that

A = W�W−1 b = Ax = W�W−1x (6.156)

Then, the first update is

x[1] = x[0] + a[0]
[− Ax[0] + b

] = (
I − a[0] A

)
x[0] + a[0]b

(6.157)
x[1] = W

(
I − a[0]�

)
W−1x[0] + a[0]W�W−1x

Consider what happens when all eigenvalues of A are equal; i.e., A has a condition number
of 1 and � is isotropic, � = λI . Then,

x[1] = W
(
I − a[0]λI

)
W−1x[0] + a[0]W (λI)W−1x (6.158)

and as W W−1 = I , we have

x[1] = (
1− a[0]λ

)
x[0] + a[0]λx (6.159)

Therefore, when � = λI , the conjugate gradient and GMRES methods converge in a single
iteration to the solution x with a step-size a[0] = λ−1, from any initial guess.

This result is the motivation behind the use of a preconditioner, a transformation of
the linear system into a related one whose condition number is closer to 1. This reduces
the number of iterations necessary for iterative methods to converge to a solution, and
is common practice in the numerical solution of BVPs. Let us choose some nonsingular
upper-triangular matrix M2 defining a coordinate transformation,

x̂ = M2x x = M−1
2 x̂ (6.160)

We then write Ax = b as

AM−1
2 x̂ = b (6.161)

We next define a lower-triangular matrix M1 and a perturbation matrix P such that P A ≈
M, M = M1 M2. That is, if the exact LU factorization is P A = LU, M1 ≈ L , M2 ≈ U .
Multiplying (6.161) by M−1

1 P , we have[
M−1

1 P AM−1
2

]
x̂ = M−1

1 Pb (6.162)

Substituting for P A, this becomes[
M−1

1 P AM−1
2

]
x̂ = [

M−1
1 LU M−1

2

]
x̂ = [(

M−1
1 L

)(
U M−1

2

)]
x̂ = c (6.163)

where we obtain c by solving

c = M−1
1 Pb ⇔ M1c = Pb (6.164)

by forward substitution.
Let the current estimate of the solution to (6.163) be x̂[k], and let the conjugate gradient

or GMRES update be

x̂[k+1] = x̂[k] + p̂[k] (6.165)

Now, if we indeed use the exact LU factors M1 = L and M2 = U, (6.163) becomes x̂ = c
and (6.165) converges in a single iteration. Of course, we cannot use the exact factors

290 6 Boundary value problems

because, being generated by elimination, fill-in causes them to have many more nonzero
elements than the original matrix A. However, it still may be possible to find approximate
factors PA ≈ M1M2 such that M−1

1 P AM−1
2 has a condition number closer to 1 than the

original system PA. Then, the conjugate gradient or GMRES search directions point more
closely towards the solution and require fewer iterations to reduce the residual norm to near
zero. PA ≈ M, M = M1 M2 is then said to serve as a preconditioner for A. The update to
the original system at each iteration is obtained by backward substitution of

M2x[k+1] = x̂[k] + p̂[k] (6.166)

For a positive-definite matrix A, the existence of the Cholesky factorization A = RTR,
allows us to use a preconditioner A ≈ MT

2 M2, such that the transformed system[
MT(−1)

2 AM−1
2

]
x̂ = c MT

2 c = b (6.167)

is also positive-definite, and thus can be solved by conjugate gradients.

How should we choose the preconditioner?

There are many possible approaches, and sometimes one uses a preconditioner specifically
tailored to the PDE being solved. Here, we consider only general approaches. The simplest
preconditioner is the Jacobi preconditioner, for which M is merely the diagonal part of A,
M = diag(diag(A)). More effective preconditioners are obtained from incomplete factor-
izations of A, using an incomplete Cholesky factorization if A is positive-definite (and we
are using pcg) or an incomplete LU factorization if A is not (and we are using gmres or
bicgstab).

What do we mean by an incomplete factorization?

Consider the Cholesky factorization of a positive-definite matrix, A = RTR, where R is
upper-triangular. While this decomposition is exact, it is inefficient to use because it fills in
zero elements of A with nonzero values. However, we can generate an incomplete Cholesky
factorization A ≈ M, M = MT

2 M2 if we execute the Cholesky algorithm, but throw out
some fraction of the new nonzero values introduced by fill-in to control the number of
nonzero values to a manageable amount. Alternatively, in a modified incomplete Cholesky
factorization, we subsume the discarded nonzero values into the diagonal elements. A similar
procedure for Gaussian elimination yields an incomplete LU factorization, A ≈ M, M =
LU , that can be applied if A is not positive-definite. Using either of these factorizations,
A ≈ M, M = M1 M2 we supply the preconditioner with the syntax

x = pcg(A,b,tol,maxit,M); x = pcg(A,b,tol,maxit,M1,M2);
x = gmres (A,b,restart,tol,maxit,M1,M2);

tol sets the desired level of accuracy, maxit is the allowable number of iterations, and
restart asks GMRES to rebuild the Krylov subspace every restart iterations. The pre-
conditioner is supplied as M or as M1, M2. To specify the initial guess of the solution,

Discretized PDEs with more than two spatial dimensions 291

2

1

ne
r

 c
 it

er
at

in
s

1 1 1 1 1 2 1 1 1

cnate radient iteratins wit
n recnditiner 1

dr terance in cinc

1
1

1

1 1 1 1 2 1 1 1
dr terance in cinc

er nd n nn c A

nn A

nn
r

ci
nc

Figure 6.16 Effect of an incomplete Cholesky preconditioner on the convergence of the conjugate
gradient method (N = 20).

use an additional argument x0 after these. Incomplete factorizations with no fill-in are
done by

R = cholinc(A,‘0’); [L,U,P] = luinc(A,‘0’);

The “0” argument demands that no fill-in be allowed. In practice, better performance is
obtained if we allow at least some fill-in, as controlled by a drop tolerance droptol, passed
with the syntax

R = cholinc(A,droptol);

cholinc pcg test.m examines the performance of pcg with an incomplete Cholesky pre-
conditioner to solve −∇2ϕ = 1 in three dimensions for a grid of N×N×N points (Figure
6.16). As droptol is increased, more nonzero values are discarded. While the memory usage
decreases, the incomplete Cholesky factorization becomes less effective at preconditioning
the system and more conjugate gradient iterations are necessary. Here, droptol values of
10−3 – 10−2 result in moderate fill-in, but are effective at reducing the number of conjugate
gradient iterations necessary to find the solution. Sparsity patterns of A and of the incom-
plete Cholesky factors for various values of droptol are shown in Figure 6.17. Such tuning
of the preconditioner (here by varying droptol) to improve its performance is a standard
part of the practice of numerically solving BVPs. cholinc pcg test.m further demonstrates
how an options structure can be substituted for droptol to control further details of the
algorithm.

It should be noted that the factors M1 and M2 may be singular if too much discarding is
done (from too high a drop tolerance). This can be avoided by adding droptol to any zero
diagonal elements of the incomplete U matrix to avoid zero values there, by calling [L,U,P]
= luinc(A, OPTS); with OPTS.udiag = 1. OPTS.droptol stores the drop tolerance. Type doc
luinc and doc cholinc for further details.

292 6 Boundary value problems

2

2

n

2

2

n

2

2
n 2121

drt 1

2

2
n 22

drt 1 2

drt 1

Figure 6.17 Effect of drop tolerance on the sparsity of incomplete Cholesky factors.

Example. 3-D heat transfer in a stove top element

Consider the following “kitchen” transport problem. We have an electric stove top compris-
ing several heating elements (Figure 6.18). Each element contains within a ceramic matrix
two annular regions in which heat is generated by electrical resistance at a volumetric rate
S. The thermal conductivities of the ceramic matrix and heat generation material have a
constant value λ. The dimensions of an individual element are defined in Figure 6.18.

We wish to calculate the temperature profile within a single element, assuming that it
is part of a periodic array (the same boundary conditions apply if it is insulated on all
sides). We assume that a metal pot containing boiling water has been placed on top of the
heating element. If the thermal conductivity of the metal pot is much higher than the thermal
conductivity of the ceramic matrix, we expect that at steady state, the temperature of the
upper surface will be equal uniformly to that of boiling water, Tb. On the bottom surface,
we assume that there is an underlying insulator layer, so that the heat flux out of the bottom
is zero, implying a zero gradient there.

We define a dimensionless temperature and dimensionless coordinates,

θ = T − Tb

Tb
χ = x

L
− 1

2
η = y

L
− 1

2
ζ = z

L
(6.168)

and convert the governing heat conduction equation to dimensionless form

− ∂2θ

∂χ2
− ∂2θ

∂η2
− ∂2θ

∂ζ 2
= σ H (χ, η, ζ) (6.169)

The following function “switches on” the heat generation only within the specified annular

Discretized PDEs with more than two spatial dimensions 293

z = 0

z = −d1

z = −D

BC6 T (x, y, z = 0) = Tb

heat generation material
ceramic material

setr

setr

y = L

y = 0

x = 0 x = L

t2

t1

r2

r1

ctatina
dain

BC2 ∂T /∂y = 0

BC1 ∂T /∂y = 0

BC3
∂T /∂x = 0

BC4
∂T /∂x = 0

BC5 ∂T /∂z = 0

(a) (b)

(c)

Figure 6.18 Stove top geometry: (a) 2 × 2 grid of heating elements; (b) side view of an individual
element in a periodic array; (c) top view of an individual element.

regions,

H (χ, η, ζ) =
{

1, if (χ, η, ζ) is within an annular region
0, otherwise

(6.170)

This reduces the number of independent parameters to seven,

r1/L t1/L r2/L t2/L a ≡ L/D b ≡ d1/L σ ≡ SL2

Tbλ
(6.171)

As we expect the solution to possess the symmetry

θ (χ, η, ζ) = θ(−χ, η, ζ) θ(χ, η, ζ) = θ (χ,−η, ζ) (6.172)

we restrict the domain to 0 ≤ χ ≤ 1/2, 0 ≤ η ≤ 1/2 (dashed lines in Figure 6.18), and
enforce symmetry at χ = 0, η = 0, to yield the boundary conditions:

BC 1 η = 0 0 ≤ χ ≤ 1

2
−1

a
≤ ζ ≤ 0

∂θ

∂η
= 0

BC 2 η = 1

2
0 ≤ χ ≤ 1

2
−1

a
≤ ζ ≤ 0

∂θ

∂η
= 0

BC 3 χ = 0 0 ≤ η ≤ 1

2
−1

a
≤ ζ ≤ 0

∂θ

∂χ
= 0

BC 4 χ = 1

2
0 ≤ η ≤ 1

2
−1

a
≤ ζ ≤ 0

∂θ

∂χ
= 0

BC 5 ζ = −1

a
0 ≤ χ ≤ 1

2
0 ≤ η ≤ 1

2

∂θ

∂ζ
= 0

BC 6 ζ = 0 0 ≤ χ ≤ 1

2
0 ≤ η ≤ 1

2
θ = 0

(6.173)

294 6 Boundary value problems

We now apply the finite difference method, to obtain a linear equation for each interior point
(χ i, ηj, ζ k) with the label n = (k − 1)Nx Ny + (i − 1)Ny + j ,

An,n−Nx Ny θn−Nx Ny + An,n−Ny θn−Ny + An,n−1θn−1 + Annθn + An,n+1θn+1

+An,n+Ny θn+Ny + An,n+Nx Ny θn+Nx Ny = σ H (χi , η j , ζk) (6.174)

Previously, when solving the Poisson equation with Dirichlet boundary conditions, we
obtained a matrix that was positive-definite and could be solved with the conjugate gradient
method. For this problem, however, we have a number of von Neumann boundary condi-
tions, e.g. at the grid points, (χi , η1 = 0, ζk), for which an approximation of the boundary
derivative,

∂θ

∂η
= 0 ≈ −θ (χi , η3, ζk)+ 4θ (χi , η2, ζk)− 3θ (χi , η1, ζk)

2(�η)
(6.175)

yields a linear equation for row n of the system,

3θn − 4θn+1 + θn+2 = 0 (6.176)

This row destroys the symmetry of the matrix (and its diagonal dominance as well). There-
fore, we use a method that does not require A to be positive-definite, e.g. bicgstab or gmres.

stove top 3D FD.m performs this calculation for the parameters

σ = 1 a = 0.67 b = 0.5
(6.177)

r1/L = 0.1 t1/L = 0.05 r2/L = 0.25 t2/L = 0.05

Options exist for solving the linear system by Gaussian elimination (impractical except
for very small grids), or by the bicgstab and gmres iterative methods. The program also
compares the total heat generation rate within the element to the net heat flux across the
upper surface. As these numbers must agree for the exact solution, comparing their values
provides a measure of accuracy. The results for a grid of 51 × 51 × 25 points are shown in
Figure 6.19 and Figure 6.20.

The MATLAB 1-D parabolic and elliptic solver pdepe

Above, we have focused on solving BVPs by implementing the finite difference method
directly. MATLAB also has a dedicated 1-D BVP solver, pdepe, for systems of equations of
parabolic and elliptic type. Its use is rather straightforward, and for further details type doc
pdepe.

Finite differences in complex geometries

We have used the finite difference method to solve BVPs in rather simple geometries. The
finite difference method can be extended to domains that are composites of these basic
shapes (Figure 6.21) or that can be “stretched” into one of them (Figure 6.22).

For the system in Figure 6.22, we define the transformed coordinates

ξ = x

L
η = y

h(x)
(6.178)

Finite differences in complex geometries 295

1

1

z

1 2
χ

2

1

1

1

12

1

2

Figure 6.19 Side view of temperature field within stove top element. The highest temperature occurs in
the center of the element, near the bottom of the heat generating regions. (σ = 1, Nxy = 51, Nz = 25.)

2

2

1

1

1 2

h

c

Figure 6.20 Top view of heat flux at upper surface. The center of the element is at the lower left.
(Total heat flux out = 0.054, total heat generation rate = 0.063.)

296 6 Boundary value problems

Figure 6.21 Grid placement in a domain comprising fused rectangles.

h

x

h 1

h 1

x 1x

setr centerine

Figure 6.22 Coordinate transformation of a domain into a rectangle.

so that the domain becomes a simple rectangle,

0 ≤ ξ ≤ 1 − 1 ≤ η ≤ 1 (6.179)

We then place a grid in this rectangular domain, and solve the BVP in transformed space.
To do so, we need to express the derivatives with respect to x and y in terms of (ξ , η). For
(6.178), the chain rule yields

∂ϕ

∂x
= ∂ϕ

∂ξ

∂ξ

∂x
+ ∂ϕ

∂η

∂η

∂x
= 1

L

∂ϕ

∂ξ
+ ∂ϕ

∂η

[
− y

[h(x)]2

dh

dx

]
= 1

L

∂ϕ

∂ξ
−

[
ηh′(ξ L)

h(ξ L)

]
∂ϕ

∂η

(6.180)
∂ϕ

∂y
= ∂ϕ

∂ξ

∂ξ

∂y
+ ∂ϕ

∂η

∂η

∂y
= ∂ϕ

∂ξ
(0)+ ∂ϕ

∂η

[
1

h(x)

]
=

[
1

h(ξ L)

]
∂ϕ

∂η

The finite volume method 297

The second derivative with respect to y then takes a simple form

∂2ϕ

∂y2
= ∂

∂y

(
∂ϕ

∂y

)
= 1

[h(ξ L)]2

∂2ϕ

∂η2
(6.181)

By contrast, the second derivative with respect to x is much more complex,

∂2ϕ

∂x2
= ∂

∂x

(
∂ϕ

∂x

)
=

{
1

L

∂

∂ξ
−

[
ηh′(ξ L)

h(ξ L)

]
∂

∂η

}{
1

L

∂ϕ

∂ξ
−

[
ηh′(ξ L)

h(ξ L)

]
∂ϕ

∂η

}
(6.182)

Through this approach, we can employ a finite difference discretization on a regular grid
in (ξ , η) space; however, the differential equation now involves more complex derivatives.
The finite element method, described below, allows us to solve BVPs in complex geome-
tries without performing such coordinate transformations (which are not always possible
anyway).

The finite volume method

Above, our focus has been on the finite difference method, which is easy to implement in
domains of rather simple geometry. In complex domains, it is difficult to place a grid and
keep track of neighbors when the grid points are required to lie along the coordinate axes.
Here, we discuss another method that is not subject to this condition. We again consider the
2-D Poisson equation but now instead of the microscopic equation

−∇2ϕ = −∂2ϕ

∂x2
− ∂2ϕ

∂y2
= f (x, y) (6.183)

we consider the corresponding macroscopic balance

0 =
∫
∂�

[(−n) · (−∇ϕ)]d S +
∫
�

f (x, y)dV (6.184)

where we have used the equivalence between (6.2) and (6.7). In the finite volume method,
we apply this macroscopic balance to each of a number of control volumes, or cells, that
partition the computational domain (Figure 6.23). In the center of each cell, we place a
computational node, at which we would like to compute the solution. To compare the
resulting finite volume method to that of finite differences, let us consider a regular grid of
uniformly-spaced points, with each cell having a “2-D volume” Vc = (�x)(�y). The nodal
coordinates are (xi , y j), xi = i(�x), y j = j(�y) and each cell is surrounded by neighbors
to the “north,” “south,” “east,” and “west.”

To obtain a set of algebraic equations for the node field values, we apply the macroscopic
balance to each cell, denoted as the control volume �(i,j), that is centered on the nodal
position (xi, yj),

0 =
∫

∂�(i, j)

[n ·∇ϕ]d S +
∫

�(i, j)

f (x, y)dV (6.185)

298 6 Boundary value problems

i 1

i −1

i −1 i 1

∆

∆

nn e

ns e

ne enw e

i

 ace

 ace

 a
ce

 a
ce

Aw ∆ A e ∆

An ∆

As ∆

Figure 6.23 Regular control volume/node pattern in the finite volume method applied to a regular
2-D grid.

For the volume integral, we use for each cell the approximation∫
�(i, j)

f (x, y)dV ≈ f (xi , y j)[(�x)(�y)] (6.186)

We partition the surface integral into contributions from each face,∫
∂�(i, j)

[n ·∇ϕ]d S ≈ A(n)
[
n(n) · ∇ϕ|(n)

]+ A(e)
[
n(e) · ∇ϕ|(e)

]
+A(s)

[
n(s) · ∇ϕ|(s)

]+ A(w)
[
n(w) · ∇ϕ|(w)

]
(6.187)

∇ϕ|(n) is an averaged gradient value over the north face. Substituting for the “areas” and
unit normals of each face,∫

∂�(i, j)

[n ·∇ϕ]d S ≈ (�x)
[
ey · ∇ϕ|(n)

]+ (�y)
[
ex · ∇ϕ|(e)

]
+(�x)

[− ey · ∇ϕ|(s)

]+ (�y)
[− ex · ∇ϕ|(w)

]
(6.188)

and using the fact that the normals point in the coordinate axes, we have∫
∂�(i, j)

[n ·∇ϕ]dS ≈ (�x)
∂ϕ

∂y

∣∣∣∣
(n)

+ (�y)
∂ϕ

∂x

∣∣∣∣
(e)

− (�x)
∂ϕ

∂y

∣∣∣∣
(s)

− (�y)
∂ϕ

∂x

∣∣∣∣
(w)

≈ (�x)

[
∂ϕ

∂y

∣∣∣∣
(n)

− ∂ϕ

∂y

∣∣∣∣
(s)

]
+ (�y)

[
∂ϕ

∂x

∣∣∣∣
(e)

− ∂ϕ

∂x

∣∣∣∣
(w)

]
(6.189)

For the averaged partial derivative on each face, we use the value at the face center, which
is simply approximated from the difference between the nodal values on each side:

∂ϕ

∂y

∣∣∣∣
(n)

≈ ϕ(i, j+1) − ϕ(i, j)

�y

∂ϕ

∂y

∣∣∣∣
(s)

≈ ϕ(i, j) − ϕ(i, j−1)

�y
(6.190)

∂ϕ

∂x

∣∣∣∣
(e)

≈ ϕ(i+1, j) − ϕ(i, j)

�x

∂ϕ

∂x

∣∣∣∣
(w)

≈ ϕ(i, j) − ϕ(i−1, j)

�x

The finite element method 299

Figure 6.24 Irregular cell geometries that may be treated using the finite volume method.

The macroscopic balance for each cell is then

0 = (�x)

[
∂ϕ

∂y

∣∣∣∣
(n)

− ∂ϕ

∂y

∣∣∣∣
(s)

]
+ (�y)

[
∂ϕ

∂x

∣∣∣∣
(e)

− ∂ϕ

∂x

∣∣∣∣
(w)

]
+ f (xi , y j)[(�x)(�y)]

(6.191)
If we now divide by the cell “volume” (�x)(�y), we have

0 = (�y)−1

[
∂ϕ

∂y

∣∣∣∣
(n)

− ∂ϕ

∂y

∣∣∣∣
(s)

]
+ (�x)−1

[
∂ϕ

∂x

∣∣∣∣
(e)

− ∂ϕ

∂x

∣∣∣∣
(w)

]
+ f (xi , y j) (6.192)

Substituting in the approximations for the derivatives, we obtain exactly the same algebraic
equations as we had for the finite difference method using the central difference approxi-
mation.

Why introduce the finite volume method if it gives the same algebraic system as the
finite difference method in this example? One reason is that we can extend the finite volume
method to complex geometries. With finite differences, the grid points must lie along the
coordinate axes, a restriction that is inconvenient in complex geometries or when we wish
to subdivide only particular cells (Figure 6.24). Also, if we use the same approximation
for the integrals over each face for the cells on both sides, the approximation errors cancel
out when we apply a macroscopic balance to the total system. This property is particularly
convenient in computational fluid dynamics, and thus the popular CFD package FLUENTTM

uses a finite volume approach.

The finite element method (FEM)

Use of a regular grid, with the points lined up along the coordinate axes, is difficult in a
complex geometry as labeling the points and identifying the neighbors is tedious. It is much
easier to generate an irregular, or unstructured grid. The FEM is popular as unlike the finite
difference method it does not require the grid to be regular.

300 6 Boundary value problems

1

2

1

2

1

2

1

2

Figure 6.25 Automatic partitioning of a 2-D region into nonoverlapping triangles, subsequent steps
in the clockwise direction from upper left.

Automatic mesh generation

Here we consider a simple algorithm to form a nonstructured grid on a closed region in two
dimensions. First, we parameterize the outer boundary as a number of line segments, and
number the vertices that connect the line segments (upper left in Figure 6.25). Subsequent
steps are shown moving clockwise. Next, we identify (1) as the vertex with the smallest
interior angle, and draw a new line segment between its neighbors (2) and (6). Then, in the
remaining polygon connecting nodes (2)–(3)–(4)–(5)–(6)–(2), we identify (3) as the vertex
with the smallest interior angle and connect its neighbors (2) and (4). Finally, we identify
in the remaining polygon (6) as the vertex with the smallest interior angle and connect its
neighbors (2) and (5) to finish the partition of the domain into nonoverlapping triangles.
Sometimes, the algorithm calls for a line segment to be drawn that is unacceptable as it lies
partially outside of the domain (Figure 6.26). The remedy is to identify a node, here (4),
such that (1)–(4) does lie within the domain, and then to proceed independently for the two
polygons on either side of (1)–(4).

Once the domain has been partitioned into nonoverlapping triangles to form an ini-
tial mesh (i.e., node positions with the associated topology of connections that describe
the partition), it can be refined for more accurate calculations. In global mesh refinement
(Figure 6.27), we add new nodes at the mid-points of the segments, and connect them so
that each old triangle now contains four smaller ones. Alternatively, if there is some region
where the solution changes rapidly, say near (2), we can perform a local mesh refinement
only within this region.

Here, we have described only a simple algorithm for partitioning a 2-D domain, but
more efficient alternatives (also in three dimensions) exist and are described in O’Rourke
(1993). FEM is often performed with rectangular elements rather than triangular (or in
three dimensions, tetrahedral) elements, but here for brevity we restrict our discussion to
triangular elements in two dimensions.

The finite element method 301

1

2

1

2

Figure 6.26 Corrective action to avoid a vertex connection that lies partially outside of the domain.

1

2

a

1

2

1

2

1

2

Figure 6.27 (a) Global and (b) local refinement of a mesh, starting from upper left and moving
clockwise.

The optional MATLAB PDE toolkit (doc pdetool), created by the developers of
FEMLABTM (www.comsol.com), has tools for forming meshes and solving simple PDEs
in two dimensions. pdetool opens a graphical user interface (GUI), in which we can draw
the domain, mesh it, specify boundary conditions and PDE parameters, solve, and plot the
solution. As tutorials are provided on the use of the GUI, here our focus is upon use of the
command-line interface to access the functions of the PDE toolkit directly.

First, we demonstrate specifying the domain geometry, using a polygon of the shape
shown in Figure 6.25 with the vertex positions

r [1] =
[

0
0

]
r [2] =

[
1
1

]
r [3] =

[
0
2

]
r [4] =

[
1.5
3

]

r [5] =
[

3
3

]
r [6] =

[
3
0

]
(6.193)

302 6 Boundary value problems

2

2

1

1

1 1 2 2

Figure 6.28 Plot of the initial mesh topology for polygon domain example.

This is done through a geometry m-file, a data file that informs the PDE toolkit functions
how to draw the boundary curves of the domain. For this system, polygon1 geom.m defines
the geometry, and its comments explain how to write a geometry m-file for an arbitrary
domain. With this file, a plot of the domain geometry is returned by

pdegplot(‘polygon1 geom’);

An initial mesh is constructed by

[P, E, T] = initmesh(‘polygon1 geom’);

with a plot of the mesh topology (Figure 6.28) being generated by

pdemesh(P, E, T);

P contains the coordinates of the nodes, E information about the edges that form the
domain boundaries, and T information about which nodes form which triangle. For a mesh
of Np nodes, P is of dimension 2× Np. The coordinates of each node n ∈ [1, Np] are stored
as xn = P1n and yn = P2n .

It is sometimes necessary to partition the domain into a number of nonoverlapping
subdomains, to be able to set different PDE parameters in each subdomain. For example,
this must be done in a heat transfer problem with regions of different thermal conductivity.
We then label each subdomain with an integer 1, 2, . . . , but here, we have only a single
subdomain “1.” All remaining regions in 2-D space outside of the computation domain are
labeled “0.”

To understand the geometry of the domain, and its partitioning into subdomains, we
need to know which line segments between nodes form either part of an external boundary

The finite element method 303

or part of an internal boundary between two subdomains. For each of these Ne “edge”
line segments in the mesh, the 7×Ne array E has a corresponding column. E1m and E2m

identify the nodes that “start” and “end” the line segment; their positions are stored in the
corresponding columns of P. We denote a “direction” along the line segment by defining a
contour variable E3m ≤ s ≤ E4m such that the segment “starts” at node E1m with the value
E3m and ends at node E2m with the value E4m. The label E5m denotes the boundary section
of which this edge segment is a part. Moving in the direction of increasing s, there are
well-defined left-hand and right-hand sides to the line segment. The identity of the region
on the left-hand side (“0” if it is outside of the domain or the subdomain, number 1, 2, . . .
if it is inside) is stored in E6m and the identity of the region on the right-hand side is stored
in E7m.

Finally, for each of the Nt nonoverlapping triangles in the mesh, there is a corresponding
column in the 4×Nt array T. The indices in [1, Np] of the three nodes that are vertices of
the triangle are stored in T1m, T2m, and T3m. T4m is the identifier of the subdomain inside
which the triangle lies.

The accuracy of FEM calculations is best for isosceles triangles. To move the node
positions to increase the “quality” of the triangles, type

P = jigglemesh(P, E, T);

Local or global mesh refinement is done by refinemesh. For a global refinement, followed
by quality improvement and plotting, type

[P2, E2, T2] = refinemesh(‘polygon1 geom’, P, E, T);
P2 = jigglemesh(P2, E2, T2); pdemesh(P2, E2, T2);

The algorithms above add points as they deem fit in the interior of the domain using
Delaunay tessellation, an algorithm that can partition a region into non overlapping triangles
for any specified set of nodal positions. For example, from the nodal positions stored in P,
the triangular partition can be constructed from

x = P(1,:)’; y = P(2,:)’;
tri = delaunay(x,y);
triplot(tri,x,y);

Some triangles are formed outside of the domain, but these can be discarded. From the
tessellation, the domain can be partitioned into nonoverlapping Voronoi polyhedra with
nodes at the center of each polyhedron by

voronoi(x,y,tri);

Information about the polyhedra are returned as optional output arguments in voronoi
and voronoin, its extension to three dimensions, four dimensions, etc. (for tessellation, the
extension is delaunayn).

Finally, various 2-D and 3-D plots of functions such as f (x, y) = x2 + y2 can be made
from the nodal function values by pdeplot. pde ex1.m demonstrates the use of this plotting
routine, as well as of the mesh functions described above.

304 6 Boundary value problems

Weighted-residual methods and the Galerkin formulation of FEM

We now examine how the FEM solves transport-type PDEs such as (6.9) using an unstruc-
tured grid. First, we collect in the PDE all nonzero terms and bring them to one side of the
equation to define a residual function that is zero everywhere and at all times for the true
solution,

R(t, r) = ∂ϕ

∂t
+∇ · (ϕv)− �∇2ϕ − s(r , t, ϕ) = 0 (6.194)

We can multiply (6.194) by any weight function w(r) and integrate over the domain � to
obtain a weighted residual that similarly must be zero at all times for the true solution,∫

�

w(r)R(t, r)dr =
∫
�

w(r)

[
∂ϕ

∂t
+∇ · (ϕv)− �∇2ϕ − s(r , t, ϕ)

]
dr = 0 (6.195)

Let us consider the time-independent problem∫
�

w(r)R(r)dr =
∫
�

w(r)[∇ · (ϕv)− �∇2ϕ − s(r , ϕ)]dr = 0 (6.196)

Equation (6.196) forms the basis of a numerical method if we parameterize a trial form
for ϕ(r) by some vector ϕ ∈ �N of coefficients ϕp. In FEM, these coefficients are the
field values at each node p. We then choose N weight functions w p(r) to generate a set of
algebraic equations

f p(ϕ) =
∫
�

w p(r)R(r)dr = 0 (6.197)

What weight functions should we use? One choice originates from seeking to minimize the
integral

minimize{ϕp} ‖R‖2
2 =

∫
�

|R(r)|2 dr (6.198)

for which the first-order optimality conditions yield

0 = ∂ ‖R‖2
2

∂ϕp
= ∂

∂ϕp

∫
�

|R(r)|2 dr = 2
∫
�

R(r)
∂ R

∂ϕp
dr (6.199)

Thus, the least-squares weight functions are w p = ∂ R/∂ϕp. These may be difficult to
compute and thus simpler methods are often favored in practice.

In the collocation method, we define the weight functions to be Dirac delta functions
centered on each node, so that the residual must be zero at each node. Unfortunately, even
though the residual is zero at each node, it may be large between nodes, especially with
strong convection. In simple geometries, accuracy is improved when the nodes are placed
at the zeros of orthogonal polynomials (see Chapter 4). This orthogonal collocation method
is discussed in Villadsen & Michelsen (1978).

Here, we use the Galerkin method, which is based upon writing the trial form of the
solution as a linear combination of each nodal value multiplied by a corresponding global

The finite element method 305

Figure 6.29 The global shape function for a node in a 2-D triangular mesh.

shape function

ϕ(r) =
Nn∑

p=1

ϕpχp(r) χp

(
r [q]

) = δpq =
{

1, p = q
0, p �= q

(6.200)

The global shape functions interpolate the field from the nodal values and in two dimensions
are also called “tent” functions due to their shape (Figure 6.29). χp(r) has the value of 1
at node p and decays to 0 linearly over the triangles for which node p forms a vertex. It is
uniformly 0 on all elements for which node p is not a vertex.

In the Galerkin method, we choose the weight functions to be the global shape functions
themselves, w p(r) = χp(r), so that for each node p we have

f p(ϕ) =
∫

�

χp(r)R(r)dr =
∫

�

χp(r)[∇ · (ϕv)− �∇2ϕ − s(r , ϕ)]dr = 0 (6.201)

This is a good choice of weight functions for several reasons. First, w p(r) ≥ 0 and w p(r) is
nonzero only in the vicinity of node p. Thus, we force the residual to “average” to zero near
node p. Each node has a corresponding (6.201), and so no part of the domain is “uncovered”
by weight functions. Because these weight functions are nonzero on only a few elements,
the integrals are easy to compute. Finally, the method has an appealing interpretation, as it
requires the residual function to be orthogonal to any linear combination of basis functions
(and hence to any trial form of the solution),

f p(ϕ) =
∫
�

χp(r)R(r)dr = 〈χp | R〉 = 0 (6.202)

Solving Poisson’s equation in two dimensions with the FEM

We demonstrate implementing the FEM for Poisson’s equation

R(r) = −∇2ϕ − f (r , ϕ) = 0 (6.203)

306 6 Boundary value problems

on a closed domain � ⊂ �2 with boundary ∂�. We partition ∂� into two sections, ∂�[d]

and ∂�[n]. On ∂�[d], we apply a Dirichlet boundary condition

ϕ(r) = ϕB(r) on ∂�[d] (6.204)

On ∂�[n], we use a von Neumann “no-flux” boundary condition

∇ϕ · n = 0 on ∂�[n] (6.205)

We generate an unstructured mesh for the domain, and wish to find the nodal field values
that make the residual zero, subject to the imposed boundary conditions. We enforce the
boundary conditions by augmenting (6.202) with two additional integrals involving weight
functions w [d](r) ≥ 0, w [n](r) ≥ 0, defined respectively on ∂�[d] and ∂�[n],

0 =
∫
�

χp(r)R(r)dr +
∫

∂�[d]

w [d]
[
ϕ − ϕB

]
d S +

∫
∂�[n]

w [n][∇ϕ · n]d S (6.206)

We evaluate the integrals in this equation, starting with the first:∫
�

χp(r)R(r)dr =
∫
�

χp(r)[−∇2ϕ − f (r , ϕ)]dr (6.207)

As the global shape functions interpolate the field using the node values,

−∇2ϕ = −∇2

[
Nn∑

p=1

ϕpχp(r)

]
=

Nn∑
p=1

ϕp(−∇2χp) (6.208)

But, since the global shape functions vary only linearly with position, −∇2χp = 0. There-
fore, even though the exact solution has nonzero second derivatives where f �= 0, the global
shape functions, and our approximate solution, never can. Where f �= 0, the residual is never
exactly zero.

Although we could try using interpolation functions of higher order to allow our approx-
imate solution to have a uniformly zero residual, we instead modify the integrals to remove
any reference to second derivatives. We then obtain what is called a weak solution, in which
we do not enforce that the residual itself actually be zero, but merely that it “integrates out”
to zero locally on the scale of each element.

The integrals (6.207) that we need to compute are∫
�

χp(r)R(r)dr =
∫
�

χp(r)[−∇2ϕ]dr −
∫
�

χp(r) f (r , ϕ)dr (6.209)

We rewrite χp[−∇2ϕ] using the chain rule identity

∇ · [χp∇ϕ] = (∇χp) · (∇ϕ)+ χp(∇ ·∇ϕ) = (∇χp) · (∇ϕ)+ χp∇2ϕ (6.210)

to obtain for the first integral on the left of (6.209)∫
�

χp[−∇2ϕ]dr =
∫
�

[(∇χp) · (∇ϕ)]dr −
∫
�

{∇ · [χp∇ϕ]}dr (6.211)

The finite element method 307

We next use the divergence theorem∫
�

[∇ · v]dV =
∫
∂�

v · nd S (6.212)

on the second integral of (6.211) to obtain∫
�

χp[−∇2ϕ]dr =
∫
�

[(∇χp) · (∇ϕ)]dr −
∫
∂�

χp[∇ϕ · n]d S (6.213)

Equation (6.209) then becomes∫
�

χp Rdr =
∫
�

[(∇χp) · (∇ϕ)]dr −
∫
∂�

χp[∇ϕ · n]d S −
∫
�

χp(r) f (r , ϕ)dr (6.214)

The algebraic equation (6.206) for node p is therefore

0 =
∫
�

[(∇χp) · (∇ϕ)]dr −
∫
∂�

χp[∇ϕ · n]d S −
∫
�

χp f dr

+
∫

∂�[d]

w [d][ϕ − ϕB]d S +
∫

∂�[n]

w [n][∇ϕ · n]d S (6.215)

We next collect the integrals over ∂�[d] and ∂�[n],

0 =
∫
�

[(∇χp) · (∇ϕ)]dr −
∫
�

χp f dr +
∫

∂�[d]

{
w [d](ϕ − ϕB)− χp[∇ϕ · n]

}
d S

+
∫

∂�[n]

[
w [n] − χp

]
[∇ϕ · n]d S (6.216)

We are still free to choose the boundary weight functions w [d](r) > 0, w [n](r) > 0, and
now do so in a convenient manner to simplify (6.216).

If we set in (6.216) w [n] = χp, this is acceptable as if p is on ∂�[n], χp ≥ 0. If not,
χp = 0 on ∂�[n] and the value of ϕp does nothing to affect ϕ(r) on ∂�[n]. Thus, by setting
w [n] = χp = 0 we merely neglect this boundary condition. With this choice w [n] = χp, the
last integral of (6.216) is zero.

To treat the Dirichlet boundary condition, we simply remove ϕp from the list of unknowns
for any node p that lies along ∂�[d], and replace ϕp with ϕB(r[p]) in all other equations.
Thus, we no longer need a boundary weight, and set w [d] = 0. Equation (6.216) for node
p /∈ ∂�[d] then simplifies to

0 =
∫
�

[(∇χp) · (∇ϕ)]dr −
∫
�

χp f dr −
∫

∂�[d]

χp[∇ϕ · n]d S (6.217)

Since we only have an instance of (6.217) for nodes that are not on ∂�[d], the last integral
is zero and we have the further simplification

0 =
∫
�

[(∇χp) · (∇ϕ)]dr −
∫
�

χp f dr (6.218)

308 6 Boundary value problems

We substitute into (6.218) the expansion (6.200) that we now write as

ϕ(r) =
∑

q /∈∂�[d]

ϕqχq (r)+
∑

q∈∂�[d]

ϕB

(
r [q]

)
χq (r) (6.219)

so that for each p /∈ ∂�[d], (6.218) becomes

0 =
∫
�

(∇χp) ·

 ∑

q /∈∂�[d]

ϕq∇χq +
∑

q∈∂�[d]

ϕB

(
r [q]

)∇χq

 dr −

∫
�

χp f dr (6.220)

Upon rearrangement, this becomes

0 =
∑

q /∈∂�[d]

Apqϕq +
∑

q∈∂�[d]

ApqϕB
(
r [q]

)− ∫
�

χp(r) f (r , ϕ)dr (6.221)

where

Apq =
∫
�

[(∇χp) · (∇χq)]dr (6.222)

The elements of A are easy to compute once we know the node positions and mesh topology.
Let �[k] denote the region occupied by triangular element k, and let the volume of this
element be V [k]. Then, since the elements are nonoverlapping, we can partition the integral
in (6.222) into contributions from each element,

Apq =
∑

k

∫
�[k]

[(∇χp) · (∇χq)]dr (6.223)

Now, each element integral is zero unless both p and q form a vertex of the element;
therefore, A is a very sparse matrix. For those elements k that do have p and q as vertices,
the gradients of the shape functions are locally constant since we use linear interpolation
(Figure 6.29). Thus, the elements of A are simply

Apq =
∑

k∈S[p,q]
E

[∇χp

∣∣
�[k] · ∇χq

∣∣
�[k]

]
V [k] (6.224)

S[p,q]
E is the set of elements that have both p and q as vertices.
To evaluate the final integral of (6.221), we interpolate the source term from its values

at the nodes,

f (r , ϕ) =
∑

q /∈∂�[d]

f
(
r [q], ϕq

)
χq (r)+

∑
q∈∂�[d]

f
(
r [q], ϕB

(
r [q]

))
χq (r) (6.225)

to obtain∫
�

χp(r) f (r , ϕ)dr =
∑

q /∈∂�[d]

Spq f
(
r [q], ϕq

)+ ∑
q∈∂�[d]

Spq f
(
r [q], ϕB

(
r [q]

))
(6.226)

where we have another sparse matrix S, with elements

Spq =
∫
�

χp(r)χq (r)dr =
∑

k∈S[p,q]
E

∫
�[k]

χp(r)χq (r)dr (6.227)

FEM in MATLAB 309

Therefore for each node p /∈ ∂�[d], we have an algebraic equation

0 =
∑

q /∈∂�[d]

Apqϕq − bp(ϕ) (6.228)

where

bp(ϕ) =
∑

q /∈∂�[d]

Spq f
(
r [q], ϕq

)+ ∑
q∈∂�[d]

Spq f
(
r [q], ϕB

(
r [q]

))− ∑
q∈∂�[d]

ApqϕB
(
r [q]

)
(6.229)

For a source term with no field-dependence, (6.228) is a sparse linear system. If not, it must
be solved with Newton’s method; however, the Jacobian matrix is also sparse.

Convection terms in FEM

Above, we have considered only diffusive transport; however, it is not difficult to extend
the method to include convective transport as well. The choice of linear shape functions
used above results in a system of algebraic equations with similar accuracy to central
finite difference approximations and shares the tendency of CDS to exhibit unphysical
oscillations when convection is strong. The oscillations are reduced by mesh refinement (to
reduce the local Peclet number) or by adding additional numerical diffusion, especially in the
streamline direction. Upwind versions of FEM are obtained by biasing the shape functions
to weight more heavily the upstream direction. Such subjects are beyond the scope of
this chapter, and the reader is referred to a dedicated text on FEM such as Akin (1994).
The relationship between FEM with linear shape functions and CDS finite differences is
examined in the supplemental material in the accompanying website for the case of the 1-D
convection/diffusion equation.

FEM in MATLAB

In MATLAB, an optional pdetool toolbox allows one to solve 2-D BVPs and to perform var-
ious low-level mesh generation and assembly operations. There exists also a more advanced
software package, FEMLABTM, (www.comsol.com), from the developers of pdetool, that
can solve multiple PDEs of various types in two and three dimensions. The supplemen-
tal material in the accompanying website contains an example of the use of FEMLABTM

to model a microfluidic H-filer, requiring the simultaneous solution of the Navier–Stokes
equations and a mass balance. A second FEMLABTM example in the supplemental mate-
rial models natural convection between two flat, vertical plates at different temperatures
(Figure 6.30).

In general, if you have a simple geometry and are solving a system of transport-type
PDEs of the form of (6.9), it is not too difficult to write your own finite difference program.
For more complicated systems, it is not worth writing an FEM program from scratch, as
the FEM is more tedious to implement than finite differences, and canned software libraries
and packages already exist that are suitable for these problems (unless your system has
PDEs that are not of standard type, e.g. when solving a fluid mechanics problem with a

310 6 Boundary value problems

a

1

1

insatin ateria

insatin ateria

cndctin
ateria

cndctin
ateria

1

1

dwn
w

w

teeratre
ied wit t

rein t rit
and cd

rein t et

Figure 6.30 (a) Velocity and (b) temperature profiles for natural convection of a fluid between two
vertical plates maintained at different temperatures. Results from FEMLABTM (www.comsol.com).

novel non Newtonian constitutive equation). Below, we demonstrate use of the MATLAB
PDE toolkit.

Numerical solution of a 2-D BVP using the MATLAB PDE toolkit

pde ex1.m demonstrates the use of the PDE toolkit functions to solve a BVP with Poisson’s
equation

−∇2u = f (x, y) = x2 + y2 + 1 (6.230)

on the domain described above, whose geometry is defined by polygon1 geom.m. On the
boundary sections on the left-hand side, a Dirichlet condition u = 1 is enforced, and on the
right-hand boundary section, we again enforce u = 1. At the top and bottom boundaries, we
use zero-flux von Neumann boundary conditions. These boundary conditions are defined
in a boundary m-file pde ex1 bound.m. Finally, pde ex1.m calls the adaptive mesh solver
adaptmesh, which computes the solution to a system of elliptic PDEs on the domain. Plots
of the mesh and solution are shown in Figure 6.31. During the solution process, the routine
estimates where the discretization errors are highest and adds new nodes.

Here, we have only a single field, but the solver can treat multiple fields and field-
dependent source terms (if we set the “nlin” flag to “on” or use pdenonlin). Type doc
adaptmesh for further details. There are also lower-level commands available that perform
isolated tasks such as assembling the various matrices, and interpolating fields from node
values; however, the use of such routines is beyond the scope of this text. Finally, routines

MATLAB summary 311

2

2

1

1

a

2

2

1

1

21

1

1

2

2

2

2

1

1

c
d

 2 2

1

1

es wit adative reineent drin stin

2

Figure 6.31 Solution of Poisson’s equation on an irregular domain in two dimensions; (a) mesh
showing adaptive refinement; (b) source term; (c) contour plot of solution; (d) solution with arrows
showing local gradient vector of solution.

also exist for solving systems of parabolic and hyperbolic equations. The GUI also has
specialized modes for heat and mass transfer, solid mechanics, and electromagnetics. Here,
we have demonstrated use of the command-line interface, but the GUI often makes solving
problems easier.

Further study in the numerical solution of BVPs

This chapter has introduced the major real-space numerical methods to solving BVPs;
however, this subject is far more vast than could be covered even in a dedicated text.
For further reading on the subject of CFD, consult Ferziger & Peric (2001). An in-depth
discussion of simulations involving coupled transport and chemical reaction is provided
by Oran & Boris (2001). Much current research in numerical methods for BVPs involves
multigrid methods in which the computation cycles through coarse to fine grids and back
again to improve the performance of iterative methods (Trottenberg et al., 2000).

MATLAB summary

For a BVP in a simple geometry, it is fairly straightforward to discretize the system oneself
using finite differences. For 1-D BVPs with equations of parabolic and elliptic type, pdepe
can be used instead. For BVPs in a complex domain in two dimensions, the PDE toolkit

312 6 Boundary value problems

can solve systems of equations of elliptic, hyperbolic, and parabolic type using FEM. The
software package FEMLABTM, built upon MATLAB by the developers of the PDE toolkit
(www.comsol.com) can solve more general and complex BVPs in two and three dimensions.
Three dimensional BVPs do not pose any new conceptual issues, but elimination can no
longer be used to solve the resulting linear systems. Iterative methods are necessary, such
as pcg if the system is positive-definite and bicgstab or gmres if it is not. Preconditioners
improve significantly the efficiency of these methods, and one may either use cholinc or
luinc to perform an incomplete Cholesky or LU factorization respectively.

Problems

6.A.1. Use finite differences to discretize the following BVP in three dimensions:

−∇2ϕ = exp[− (x2 + y2 + z2)/2] − 1 ≤ x, y, z ≤ 1
(6.231)

Dirichlet condition ϕ = 0 on all boundaries

Solve the linear system with pcg, for a grid of 50×50×50 points. How many iterations
are necessary with no preconditioner? Next, use an incomplete Cholesky preconditioner
with no fill-in, and report the number of iterations required for convergence. Finally, as a
function of droptol, plot the number of iterations and the number of nonzero elements in the
Cholesky factor. What value of drop tolerance do you recommend using? For this optimal
value of the drop tolerance, change the number of grid points, and report how the number
of iterations and CPU time (doc cputime) varies with the size of the grid.

6.A.2. Solve the system Ax = b that discretizes the BVP of problem 6.A.1 without storing
the matrix A in memory. Supply a routine that returns Av for input v.

6.A.3. Solve the 2-D version of problem 6.A.1 with z = 0 by the FEM using the PDE toolkit
or FEMLABTM.

6.B.1. Consider the following heat transfer problem. A fluid with thermal conductivity λ,
density ρ, and specific heat capacity Ĉp flows at a Reynolds number Re < 100 through a
cylindrical pipe of radius R. The fluid viscosity is µ, and you may neglect viscous heating. If
z is the axial position, for z < 0 the wall temperature is T0 and at z = 0 the wall temperature
jumps abruptly to T1 for z > 0. This is known as the Graetz problem, and an analytical
solution exists if conduction in the axial direction is neglected. Transform this problem
into dimensionless variables and write a program to compute numerically the steady-state
temperature profile without neglecting axial conduction. Have your program take as input
the values of the dimensionless parameters that characterize the system. Report your results
for values of the parameters in the range [10−2, 102]. Try reducing the number of independent
parameters through clever rescaling.

6.B.2. You are conducting the enzymatic conversion of a substrate S into a product P, with
the micromoles of S converted per minute per milligram of enzyme being described by
Michaelis Menten kinetics,

−r̂S = VmS

Km + S
Vm = 200

µmol

min mgE

Km = 0.2 M (6.232)

Problems 313

You use an immobilized enzyme system in which the enzyme is encapsulated in beads of
radius R of a polymer hydrogel at a mass loading density ρE = 10−2 mgE/ml of gel. The
substrate diffusivity in the hydrogel is 10−6 cm2/s. The bulk substrate concentration is 1
M. Neglect external mass transfer resistance. Define an internal effectiveness factor, and
compute its value as a function of R in the range 10−4 – 10−2 m. Since the enzyme is
expensive, what radius would you use, and why?

6.B.3. Consider a system in which a charged surface, maintained at a constant electric
potential �0, is in contact with an aqueous solution of NaCl, with a bulk salt concentration
cNaCl. If �0 > 0, the surface selectively attracts the Cl− anions, else if �0 < 0 it attracts the
Na+ cations. In either case, near the surface there is a region of charge imbalance in the salt
solution that counteracts the surface potential. As the distance z from the surface increases,
the electric potential decays to zero, as the surface electric charge is screened by the salt
solution.

We present here a model for the electric potential near a charged planar surface known as
Gouy–Chapman theory. Let c+(z) and c−(z) be the ion molar concentrations as functions
of the distance z from the surface. The charge density, also a function of z, is then

ρ(z) = qe Nav[c+(z)− c− (z)] (6.233)

qe = 1.602×10−19 C is the charge of an electron and Nav = 6.022×1023. The electric
potential is governed by the Poisson equation

−d2�

dz2
= ρ(z)

ε0εr
(6.234)

ε0 = 8.854×10−12 C2/(J m) is the permittivity of free space and εr = 78 is the dielectric
constant of water.

We obtain a closed-form equation for �(z) at equilibrium using statistical mechanics. The
potential energy of a cation is E+(z) = qe�(z), and that of an anion is E−(z) = −qe�(z).
Then, with the far-field condition �(z)→ 0 as z→∞, the Boltzmann distribution predicts
the ion concentration fields

c+(z) = cNaCl exp

[
−qe�(z)

kbT

]
c− (z) = cNaCl exp

[
+qe�(z)

kbT

]
(6.235)

The charge density is then

ρ(z) = qe NavcNaCl

{
exp

[
−qe�(z)

kbT

]
− exp

[
+qe�(z)

kbT

]}
(6.236)

The electric potential field at equilibrium is obtained from the following BVP, involving
the nonlinear Poisson–Boltzmann equation,

−d2�

dz2
= ρ(z)

ε0εr
= qe NavcNaCl

ε0εr

{
exp

[
−qe�(z)

kbT

]
− exp

[
+qe�(z)

kbT

]}
(6.237)

BC 1 �(0) = �0

BC 2 �(∞) = 0

The quantity qe NavcNaCl/ε0εr on the right-hand side must have the same units as the left-
hand side (electric potential divided by length squared). Likewise, from the argument of

314 6 Boundary value problems

the exponential functions, kbT/qe must have the units of electric potential. Therefore, from
dimensional analysis, the characteristic decay length of ϕ(z) satisfies

qe Nav(2cNaCl)

ε0εr
= kbT/qe

λ2
⇒ λ =

[
ε0εrkbT

q2
e Nav(2cNaCl)

]1/2

(6.238)

We have placed an additional factor of 2 here to agree with the usual definition of λ as
the Debye screening length. Note that in this equation, cNaCl is in units of moles per cubic
meter. We next define the dimensionless quantities

ϕ = qe�

kbT
ξ = z

λ
(6.239)

so that the BVP in dimensionless form is

−d2ϕ

dξ 2
= 1

2

[
e−ϕ(ξ) − e+ϕ(ξ)

]
(6.240)

BC 1 (surface) ϕ(0) = qe�0/(kbT)
BC 2 (far-field) ϕ(∞) = 0

Make a plot of Debye length (in meters) vs. [NaCl] in moles at room temperature in the
range of 10−6–1 M. Does it make sense to have a Debye length less than 10−10 m? Solve
this BVP numerically using finite differences, and plot ϕ(ξ) for various values of ϕ(0).
Show that when |�0| � (kbT/qe), the solution is a simple exponential decay. For a further
discussion of screening in ionic solutions, consult Stokes & Evans (1997).

6.B.4. In problem 6.B.3, we assumed a constant surface potential; however, we can modify
the problem to impose a known surface charge density σ 0. Electroneutrality of the surface
and the neighboring salt solution requires

σ0 = −
∫ ∞

0
ρ(z)dz = ε0εr

∫ ∞

0

d2�

dz2
dz = ε0εr

d�

dz

∣∣∣∣
∞

0

(6.241)

In the second equality we have used the Poisson equation. Since as z →∞, �(z) becomes
uniformly zero, the derivative at z = ∞ is zero and the surface charge density is simply
related to the derivative value at the surface:

σ0 = −ε0εr
d�

dz

∣∣∣∣
0

(6.242)

Thus, we need only modify the boundary condition at the surface to move from a specified
surface potential value to a specified charge density. Modify your program from problem
6.B.3 to plot the dimensionless solution as a function of dimensionless charge density.

6.B.5. We focus in this text on problems of direct interest to chemical engineers; however,
the solution of BVPs is important in other fields as well. In finance, a common means to
assign a value to a derivative is to solve the Black–Scholes equation. Let S(t) be the spot
price of some asset (e.g. a stock) at time t. We are considering purchasing a European call
option that gives us the opportunity to buy the asset at specified future time T > t for an
exercise price E, yielding a payoff if the future price S(T) is above E of

payoff = max{S(T)− E, 0} (6.243)

Problems 315

as wit inr
cnent A at

artia ressre pA
iid
inet

iid
tet

z
y

L

b vz(y)

g at interace
cA = HApA

as

z
y

θ

iid

Figure 6.32 Reaction-enhanced diffusion into a falling film.

The current value (fair price) V of the option should depend upon the current asset
price S and the time remaining to expiry, T − t. The Black-Scholes equation (derived in
Chapter 7) states that V (S, t) satisfies

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ r S

∂V

∂S
− r V = 0 (6.244)

with the final and boundary conditions

final condition V (S, T) = max{S − E, 0}
(6.245)

spatial boundary conditions 0 = ∂2V

∂S2

∣∣∣∣
0

= ∂2V

∂S2

∣∣∣∣
Smax�max(S(t),E)

r is the (risk-free) interest rate used to define the time value of money. σ is the volatility of
the underlying asset, and measures how vigorously the price varies with time,

σ 2 =
∑Ns

k=1(Rk − 〈R〉)2

(Ns − 1)(�t)
Rk = S(tk +�t)− S(tk)

S(tk)
〈R〉 = �

Ns
k=1 Rk

Ns
(6.246)

This model is based upon a treatment of the asset price as a random walk, the mathematics
of which will be discussed in Chapter 7. While an analytical solution exists for this “plain
vanilla option,” more realistic cases generally require numerical solution. Write a program
that computes V (S, t) for a European call option. For more on this subject, consult Wilmott
(2000).

6.C.1. Consider a system with a reversible reaction A+ B ⇔ C+ D, with kinetics rR =
k(cAcB − K−1

eq cCcD) occurring inside a catalyst pellet that is the shape of a long, narrow
cylinder of radius R. Given R, k, Keq, the effective binary diffusivities D j within the catalyst
pellet, and the surface concentrations c jS of each species j = A, B, C, D, write a program
that computes the net reaction rate per unit volume of catalyst. Report your results for the
following parameter values (make sure to use proper concentration units that agree with the
other terms in your equations),

R = 0.1 cm D j = 10−7 cm2/s k = 10−3 l

mol s
Keq = 103

(6.247)
cAS = 1 M cBS = 1 M cCS = cDS = 0

316 6 Boundary value problems

6.C.2. Modify the program of problem 6.C.1 to account for external mass transfer resistance,
given the effective binary diffusivities D jf of each species in the external fluid, the Sherwood
number Sh, and the bulk concentrations c jb. Report your results for the parameter values of
problem 6.C.1, replacing the known surface concentrations with those computed by external
mass transfer with

D jf = 10−5 cm2/s Sh = 10
(6.248)

cAb = 1 M cBb = 1 M cCb = cDb = 0

6.C.3. Solve problem 6.C.1. by FEM using the PDE toolkit or FEMLABTM.

6.C.4. Instead of assuming a given Sherwood number for the external mass transfer coeffi-
cients, use FEMLABTM to compute the laminar velocity profile around the cylinder to directly
model the effect of forced convection on the external mass transfer rate. Report your results
for Reynolds’ numbers of 10−4, 10−2, 10−1, 1, 10, using a viscosity µ = 10−3 Pa s and
density ρ = 103 kg/m3.

6.C.5. A common technique to remove a minor component from a gas stream is reactive
absorption (Cussler & Varma, 1997). A gas phase containing a minor component A is passed
through a column where it contacts a liquid phase containing a species B that reacts with
A. The depletion of A through reaction with B allows the removal of more A from the gas
stream than would be possible from considerations of solubility alone.

Let us consider the problem of reactive absorption into a falling film (Figure 6.32) from
a large volume of gas with a constant partial pressure of A, pA = 10−4 atm. At the inter-
face, the concentration of A is in equilibrium with the gas according to Henry’s law, HA =
103 M/atm. We assume that the amount of A entering the film has a negligible effect on the
viscosity µ and density ρ (use the values for water) and that the film travels so slowly that the
flow is laminar. Within the liquid, A reacts with B according to a reversible first-order reac-
tion A+ B ⇔ AB at the rate rR = k(cAcB − K−1cAB), K = 103 and k = 10−2 L/(mol s).
The feed stream has cB0 = 1M , cA0 = cAB0 = 0, and model B and AB as being nonvolatile
by using no-flux BCs at the liquid–gas interface. For a dilute solution of A and B, we neglect
the heat of absorption and assume a uniform temperature.

Propose a model for this system in the form of a BVP, specifying both the set of PDEs
and the appropriate boundary conditions. Assume a film of thickness b = 1 mm, length
L = 50 cm, inclined at θ = 80◦. Use effective binary diffusivities in the film of D j =
10−5 cm2/s, j = A, B, AB. Compute the steady-state concentration profile of each species
within the film and the average absorption rate per unit area. Then, decrease the rate constant
to zero to see what the mass transfer rate would be without reaction.

7 Probability theory and
stochastic simulation

We now consider probability theory, and its applications in stochastic simulation. First, we
define some basic probabilistic concepts, and demonstrate how they may be used to model
physical phenomena. Next, we derive some important probability distributions, in particular,
the Gaussian (normal) and Poisson distributions. Following this is a treatment of stochastic
calculus, with a particular focus upon Brownian dynamics. Monte Carlo methods are then
presented, with applications in statistical physics, integration, and global minimization
(simulated annealing). Finally, genetic optimization is discussed. This chapter serves as a
prelude to the discussion of statistics and parameter estimation, in which the Monte Carlo
method will prove highly useful in Bayesian analysis.

The theory of probability

A stochastic system is one whose behavior is not purely deterministic and predictable, but
rather has (assumed inherent) randomness. The theory of probability provides a mathemat-
ical framework for understanding and modeling such systems. Rather than provide abstract
definitions, we introduce the subject through an example: modeling the distribution of
polymer chain lengths in condensation polymerization.

Condensation polymers

Let us consider a reacting system comprising two chemical species. The first has a number α1

of acid groups, e.g.−COOH, and the second has a number β2 of base end groups, e.g.−OH
or−NH2. These acid and base end groups react with each other to form linkages,−CONH−
or−COO− and a condensate molecule (e.g. water) (Figure 7.1). An example is terephthalic
acid and ethylene glycol (Figure 7.2), which react to form poly(ethylene terephathalate),
PET, a common material found in soda bottles and clothing. As each molecule contains two
functional groups, the reaction produces linear polymer chains with no branching.

If one of the species contains more than two functional groups, the polymer chains are
not linear, but rather contain many branches, and at sufficiently high conversions (above
the gel point) a cross-linked network is formed (Figure 7.3). We wish to apply probability
theory to understand how the distribution of chain lengths depends upon the conversion of

317

318 7 Probability theory and stochastic simulation

A + B

 2

+ 2

acid + ase inae cndensate

+ 2

Figure 7.1 Condensation reactions among acid and base groups.

−

A

n − n

− − − + 2n 2

n

+ − 2 − 2 −

− − 2 − 2

Figure 7.2 Condensation polymerization to produce linear PET chains.

B

BB

2

2

2

2

2

aa

+

A 1a

A 1A

a 1a

aa

a
crssined
 netwr

e
tinctina ners

a

a

1 a

β2 =
α1 = 2

Figure 7.3 Cross-linked network forms for multifunctional monomers when the conversion exceeds
the gel point.

the end groups, in both the linear and nonlinear (multifunctional) cases. By doing so, we
encounter many basic definitions in probability theory.

Chain length distribution in linear condensation polymers; joint and
conditional probabilities

First, we consider the linear case with α1 = β2 = 2. Initially, we have equal concentrations
of the two monomers, [M1]0 = [M2]0. As each monomer has two end groups, the initial
acid and base concentrations are also equal, [A]0 = [B]0 = 2[M1]0. As the acid and base
groups react, they form longer and longer chains. How does the distribution of chain lengths
vary as a function of conversion?

We define the conversions of the acid and base groups respectively as

pA = 1− [A]

[A]0
pB = 1− [B]

[B]0
(7.1)

The theory of probability 319

Because [A]0 = [B]0 and the reaction consumes equal numbers of acid and base end
groups, pA = pB = p. At 0 ≤ p ≤ 1, let [Pn] be the concentration of chains that com-
prise n monomer units, i.e., that have a chain length or degree of polymerization equal to n.
Each of the monomers has a chain length of 1; thus, at p = 0, [P1] = 2[M1]0 = [A]0 and
all other [Pn �=1] = 0.

We wish to compute as functions of 0 ≤ p ≤ 1 the chain length distribution [Pn], the
number (DPn) and weight (DPw) averaged chain lengths, and their ratio (the polydispersity
Pdisp), which is a measure of the breadth of the distribution. If Pdisp = 1, all chains are of
the same length, and if Pdisp � 1 there is considerable variation in chain length.

D Pn ≡
∑∞

n=1 n[Pn]∑∞
n=1[Pn]

D Pw ≡
∑∞

n=1 n2[Pn]∑∞
n=1 n[Pn]

Pdisp ≡ D Pw

D Pn
(7.2)

We compute these quantities using statistical techniques developed by Paul Flory (Flory,
1953, Odian, 1991, Dotson et al., 1996).

First, we make the assumption (the equal reactivity hypothesis) that the reactivity of an
end group does not depend upon the length of the chain to which it is attached. As defined
above, pA = pB = p is the fraction of all acid or base groups that have reacted, and the
fraction that remain unreacted is (1− p). If all groups are equally likely to have reacted or
not, and we randomly select a group, the probability that it will have reacted is p and the
probability that it will not have reacted is (1− p).

Defining the probability of an event

Above, we have invoked an argument of frequentist statistics to define a probability p from
the conversion p. That is, the probability of observing an event E is determined by the
expected number of observations of E, NE, in a very large number N of independent random
trials,

p(E) ≈ NE

N
(7.3)

It is not necessary to invoke such a large-population argument to define a probability. We
can say that the probability of observing an event E is p(E) if we have no preference between
making the following two bets:

In a random trial, event E is observed.
or

A perfectly uniform random number generator in [0, 1] returns a value u
less than or equal to p(E).

The latter definition of a probability is less restrictive, but it also appears to be open to
subjective interpretation. That is, we are making a personal value (belief) judgement about
which bet to accept. This subject will be revisited in our discussion of statistics and parameter
estimation. For now, we accept the latter definition as being more general, but note that the
frequentist approach provides a convenient choice of belief when the necessary frequency
information is available. It is always incumbent upon us to assign probabilities in such a

320 7 Probability theory and stochastic simulation

way as to avoid inconsistencies. For example, the sum of the probabilities that E occurs and
that E does not occur must always equal 1. Similarly, we define probabilities such that they
satisfy the rules of joint and conditional probabilities outlined below.

We now use this probabilistic (frequentist) interpretation to compute [Pn]. Each chain in
the system, being linear, has on average one unreacted acid group and one unreacted base
group. As the acid and base concentrations are equal, the total number of chains is

∞∑
n=1

[Pn] = [A] = (1− p)[A]0 (7.4)

What fraction of this total number of chains has a length equal to n? Or, equivalently, what
is the probability that a randomly selected unreacted acid group is attached to a chain with
exactly n monomer units? If this probability is P(A is attached to chain of n units), then

[Pn] = (1− p)[A]0 × P(A is attached to chain of n units) (7.5)

To compute this quantity, we use the rules of probability theory, for which we need a few
basic definitions.

Probability theory deals with events. Here, the event of interest is the observation that
a randomly-selected chain has exactly n monomer units. Let us say that we have selected
at random an unreacted acid end group that must lie at a chain end. If we march down the
chain, we find that to achieve a length of exactly n units, the first (n − 1) encountered acid
groups must have reacted and the nth group must not have reacted. Thus, the event that our
chain has exactly n units can be related to a sequence of simpler events – whether each
of the acid groups encountered along the chain has reacted or not. We now compute the
probability of the composite event (the chain contains n units) from the probabilities of
these simpler events.

For each j = 1, 2, . . . , N , let Rj be the event that the jth acid group along the chain has
reacted, and Uj be the event that it is unreacted. Since these are the only two possibilities,
their probabilities must sum to 1,

P(R j)+ P(U j) = 1 (7.6)

Our composite event, (A is attached to chain of n units), is equivalent to saying that the
following sequence of events occurs, R1, R2, . . . , Rn−1, Un so that P(A is attached to chain
of n units) is equal to the joint probability

P(A is attached to chain of n units) = P(R1 ∩ R2 ∩ · · · ∩ Rn−1 ∩Un) (7.7)

∩ is the symbol for intersection, and here signifies that the events on both sides of the sign
occur.

Defining joint and conditional probabilities

The joint probability of two events E1 and E2 is the probability P(E1∩ E2), also written
P(E1, E2), that both occur. If P(E1) is the probability that E1 occurs,

P(E1∩ E2) = P(E1)P(E2 | E1) (7.8)

The theory of probability 321

where P(E2|E1) is the conditional probability that if E1 occurs, so does E2. If the probability
of observing event E2 does not depend upon whether E1 occurs or not, the two events are
said to be independent, and

P(E2|E1) = P(E2) P(E1 ∩ E2) = P(E1)P(E2) (7.9)

The conditional and joint probabilities are related by Bayes’ theorem, whose application to
statistics forms the basis of the next chapter,

P(E1 ∩ E2) = P(E1)P(E2|E1) = P(E2)P(E1|E2) (7.10)

This structure is quite flexible and is easily extended to multiple events. Using this frame-
work, we write the probability that a randomly-selected chain has exactly n units as a product
of conditional probabilities as

P(A is attached to chain of n units)

= P(R1)× P(R2|R1)× P(R3|R1 ∩ R2)× · · · × P(Rn−1|R1 ∩ R2 ∩ · · · ∩ Rn−2)

×P (Un|R1 ∩ R2 ∩ · · · ∩ Rn−1) (7.11)

If we assume that the probabilities of every group having reacted or not are equal and
independent, the events in this sequence are independent, and we have

P(A is attached to chain of n units) = P(R1)× P(R2)× · · · × P(Rn−1)× P(Un)
(7.12)

The probabilities of observing a reacted or unreacted group are

P(R j) = p P(U j) = (1− p) (7.13)

therefore,

P(A is attached to chain of n units) = pn−1(1− p) (7.14)

The concentrations of each chain length polymer at conversion p thus are predicted to follow
the Flory most-probable chain length distribution:

[Pn] = (1− p)[A]0 × pn−1(1− p) = [A]0(1− p)2 pn−1 (7.15)

The average chain lengths and polydispersity are computed using the formulas of geometric
progression

D Pn ≡
∑∞

n=1 n[Pn]∑∞
n=1[Pn]

= 1

1− p
D Pw ≡

∑∞
n=1 n2[Pn]∑∞
n=1 n[Pn]

= 1+ p

1− p
(7.16)

Pdisp ≡ D Pw

D Pn
= 1+ p

We only achieve high chain lengths at conversions near 1, and in this limit Pdisp≈ 2. Figure
7.4 shows the distribution (7.15) at 99% conversion.

322 7 Probability theory and stochastic simulation

12

1

2

1 2

n w

n
 A

=
1

cain ent n

× 1 −

Figure 7.4 Flory most-probable chain length distribution at a conversion of 0.99. The locations of
number and weight averaged chain lengths are noted. Polydispersity is 1.99.

Gelation of multifunctional monomers (more on conditional
probabilities and mathematical expectation)

We now extend this statistical approach to the case of multifunctional monomers in which
either α1 or β2 exceeds 2 so that above a critical gel point conversion, the system forms
a cross-linked network that extends throughout space (Figure 7.3). To do so, we use the
Macosko–Miller method (Macosko & Miller, 1976), in which we compute at a given con-
version the average mass W of a chain that is attached to a randomly-selected monomer
unit. The gel point is the conversion at which W diverges to infinity.

First, we must be more precise about what we mean by “average.” Let us say that we
perform a number of trial experiments v = 1, 2, 3, . . . , Nexp in which we select at random
a monomer unit in the system, and for each trial we measure the mass Wv of the chain
that contains the randomly-selected unit. As Wv varies in a stochastic manner from one
experiment to the next, it is a random variable. If M1 is the mass of a single monomer unit
of type 1 and M2 is the mass of a single monomer unit of type 2, Wv takes the value for a
chain of m1 type-1 units and m2 type-2 units,

Wm1,m2 = m1 M1 + m2 M2 (7.17)

We obtain D Pw by setting M1 = M2 = 1. If P(Wm1,m2) is the probability of observing in
any single trial the value Wm1,m2 , we define the expectation of the random variable W as

E(W) =
∑

m1,m2

Wm1,m2 P(Wm1,m2) (7.18)

The theory of probability 323

If the number of trials Nexp that we perform is very large, we expect

E(W) = 〈W 〉 ≈ 1

Nexp

Nexp∑
v=1

Wv (7.19)

To predict the gel point, we compute E(W) at the specified conversions

pA = 1− [A]

[A]0
pB = 1− [B]

[B]0
(7.20)

Unlike our previous discussion, we do not assume that pA = pB. We start with N1 monomers
of type 1 per unit volume, each with α1 acid groups, and N2 monomers per unit volume of
type 2, each with β2 base groups. The initial acid and base end group concentrations are

[A]0 = α1 N1 [B]0 = β2 N2 (7.21)

As the numbers of acid and base groups consumed by reaction are equal,

[A]0 − [A] = [B]0 − [B] ⇒ [A]0 pA = [B]0 pB (7.22)

Hence, the conversions of the acid and base groups are related,

pB = [A]0

[B]0
pA =

(
α1 N1

β2 N2

)
pA (7.23)

The conditional probability that if we select an acid group, it is unreacted, is

P(A|a) = 1− pA (7.24)

and the conditional probability that it has reacted to form a linkage is

P(L|a) = pA (7.25)

As any randomly-selected acid group must be either reacted or unreacted, these two condi-
tional probabilities must sum to 1:

P(L|a)+ P(A|a) = 1 (7.26)

Similarly for the base group, we have the conditional probabilities

P(B|b) = 1− pB P(L|b) = pB (7.27)

From these conditional probabilities, we compute E(W). First, we note that if we randomly
select a monomer unit at random, the probabilities that it is of type 1 or 2 are

P(M1) = N1

N1 + N2
P(M2) = N2

N1 + N2
(7.28)

Here M1 and M2 denote the events that the randomly-selected monomer unit is type 1 or
type 2 respectively.

If E(W |M1) is the conditional expectation of W when we have selected a type 1 monomer
unit, and E(W |M2) is the corresponding value for a type-2 monomer, we expand E(W) in
terms of the mutually exclusive events M1 and M2:

E(W) = E(W |M1)P(M1)+ E(W |M2)P(M2) (7.29)

324 7 Probability theory and stochastic simulation

a 1a

a

1 a

22

2

2

aa

aA 1a

aa

a

A
t

B
in

B
t = A

inA
t A

Figure 7.5 Expected weights looking “out” or “in” from functional groups.

We first consider E(W |M1). If we select a type-1 unit, the mass W of the chain must at
least equal the mass M1 of a single type-1 unit, as well as the contributions from the masses
observed by looking “outwards” from each of the α1 acid groups (Figure 7.5). E(W out

A) is
the expected weight of the section of chain attached to a type-1 unit through one of its acid
groups. Thus,

E(W |M1) = M1 + α1 E
(
W out

A

)
(7.30)

Similarly, the expected weight observed if we select a type-2 monomer equals the weight of
a single type-2 monomer unit plus the expected weights E(W out

B) looking outwards across
each of the β2 base groups:

E(W |M2) = M2 + β2 E
(
W out

B

)
(7.31)

To compute E(W out
A), we note that a randomly-selected acid group must be either reacted

or unreacted, so that we expand in the possible outcomes:

E
(
W out

A

) = E
(
W out

A |L)P(L|a)+ E
(
W out

A |A)P(A|a) (7.32)

If the selected acid group is unreacted, there is no chain attached to this group and
E(W out

A |A) = 0. Also, as P(L|a) = pA, we have

E
(
W out

A

) = E
(
W out

A |L)× pA (7.33)

Next, from Figure 7.5, we note that the expected weight looking “out” from an acid group
on monomer 1 equals the expected weight observed looking “in” from a base group on a
monomer of type 2, and hence

E
(
W out

A |L) = E
(
W in

B

) = M2 + (β2 − 1)E
(
W out

B

)
(7.34)

Here, we have used the fact that if we come “in” across one of the base groups, there are
only (β2 − 1) other possible ways to go “out.” Combining (7.33) and (7.34) yields

E
(
W out

A

) = E
(
W in

B

)× pA = pA
[
M2 + (β2 − 1)E

(
W out

B

)]
(7.35)

Applying the same logic to E(W out
B),

E
(
W out

B

) = E
(
W in

A

)× pB = pB
[
M1 + (α1 − 1)E

(
W out

A

)]
(7.36)

Important probability distributions 325

Equations (7.35) and (7.36) provide two equations for the two unknowns E(W out
A) and

E(W out
B), yielding

E
(
W out

A

) = pA[M2 + (β2 − 1)pB M1]

1− pA(α1 − 1)pB(β2 − 1)
(7.37)

from which E(W out
B) is computed by (7.36). The expected weight attached to a randomly

selected group is then

E(W) = [
M1 + α1 E

(
W out

A)]P(M1
)+ [

M2 + β2 E
(
W out

B

)]
P(M2) (7.38)

Gelation occurs when E(W) →∞, which happens as 1− pA(α1 − 1)pB(β2 − 1), the
denominator of E(W out

A), goes to zero, yielding the gel point condition

pA(α1 − 1)pB(β2 − 1) = 1 (7.39)

Using the relation between the two conversions posed by the reaction stoichiometry (7.23),
the conversion of A at the gel point is

pA,c =
√(

β2 N2

α1 N1

)
1

(α1 − 1)(β2 − 1)
(7.40)

For balanced end group concentrations, with α1 = 2, β2 = 3,

pA,c = pB,c = pc =
√

1

(2− 1)(3− 1)
=

√
1

2
= 0.7071 (7.41)

Figure 7.6 shows the predicted DPw vs. p, up to the point where it diverges to infinity as the
gel forms (denoted by vertical dashed line).

Above, we have computed the gel point only for a mixture of two reactants. This theory is
extended to the case of multiple monomers (with a more general treatment of the conditional
probabilities) in Beers & Ray (2001). This probabilistic approach can also be used to
compute the gel and sol mass fractions following gelation.

Important probability distributions

We now consider some important, and common, forms of probability distributions for a
random variable. First, we state some basic definitions.

Definition Probability distribution of a discrete random variable
Let X be a random variable that may take one of a countable number M of discrete values X1,
X2, . . . , XM. Let us conduct some very large number T of trials in which we measure the value
of X. Let N (X j) be the number of times that we observe the value X j , �

M
j=1 N (X j) = T .

Then, the probability distribution of X is defined in the frequentist manner for very large T
as

P(X j) = N (X j)

T

M∑
j=1

P(X j) = 1 (7.42)

326 7 Probability theory and stochastic simulation

2

1

1

1

12

1

2

2 1
cnversin

w

Figure 7.6 DPw vs. p for gel formation with a bifunctional acid and a trifunctional base, with balanced
end group concentrations. Gelation occurs at a conversion of 70.7%. ([A]0 = [B]0, α1 = 2, β2 = 3.)

Definition Probability distribution of a continuous random variable
Let x be a random variable that may take any value between xlo and xhi. We define the
continuous probability distribution of x to be the function p(x), such that the probability
of observing a value between x and x + dx is p(x)dx . This probability distribution is
normalized to 1: ∫ xhi

xlo

p(x)dx = 1 (7.43)

and the expectation, or average, value of x is

E(x) = 〈x〉 =
∫ xhi

xlo

xp(x)dx (7.44)

To generate the continuous probability distribution from a number of trial measurements,
we subdivide the region xlo ≤ x ≤ xhi into B nonoverlapping bins, each of width �x =
(xhi − xlo)/B. Bin j contains the subdomain x j − (�x)/2 ≤ x ≤ x j + (�x)/2. Again we
perform a very large number T of trials, in which we count the number of times N (x j) that
we observe a value of x in bin j. Then, the value of p(x j) is approximately

p(x j) ≈ N (x j)

(�x)T
(7.45)

and we approximate the distribution using piecewise-constant interpolation,

p(x) ≈
B∑

j=1

[
N (x j)

(�x)T

]
� j (x)

� j (x) =
{

1, if [x j − (�x)/2] ≤ x < [x j + (�x)/2]
0, otherwise

(7.46)

Important probability distributions 327

Definition Cumulative probability distribution
We define from either a discrete or a continuous probability distribution the cumulative
probability distribution,

F(Xk) =
k∑

j=1

P(X j) or F(x) =
∫ x

xlo

p(x ′)dx ′ (7.47)

that satisfies the normalization condition

F(X M) = 1 or F(xhi) = 1 (7.48)

From the cumulative probability distribution, we can generate values of X or x at random
according to the specified probability distribution. For example, in the case of a contin-
uous variable, we generate a uniformly distributed number 0 ≤ u ≤ 1 using rand. The
corresponding random value of x, generated according to the probability distribution p(x)
satisfies

F(x) =
∫ x

xlo

p(x ′)dx ′ = u (7.49)

Definition Variance and standard deviation
We have defined the expectation for both discrete and continuous probability distributions
that gives the average, or mean value, of a random variable. To obtain a measure of the breadth
of the distribution of X, we define the variance to be the expected quadratic variation from
the mean,

var(X) = E[(X − E(X))2] = E(X2)− [E(X)]2 (7.50)

The square root of the variance is known as the standard deviation,

σ =
√

var(X) (7.51)

If X and Y are independent, the variance of their sum is simply

var(X + Y) = var(X)+ var(Y) (7.52)

Later we extend these definitions to multiple, interacting random variables, but first consider
some common forms of discrete and continuous probability distributions.

Bernoulli trials

Let us say that we are tossing a coin for which we have a probability pH of observing heads
and a probability pT of observing tails. Each coin toss, assumed independent, is an example
of a Bernoulli trial. If the coin is fair, pH = pT = 1/2. We now ask the following question:

If we make n independent coin tosses, what is the probability that we will observe heads nH number
of times, i.e. that our sequence of tosses will return heads nH times and tails nT = n − nHT times?

While this may seem like a question that is only important for those planning a trip to
Las Vegas, it is directly relevant to a wide variety of physical phenomena. Let us say that

328 7 Probability theory and stochastic simulation

12

1

2

1 1 2

−2

−

−

−

ste ner

di
sa

ce
en

t

Figure 7.7 One-dimensional random walk showing the net displacement x vs. the number of random
steps of length 1.

we are performing an experiment, and observe that even if we hold all of the parameters
constant (insofar as we can identify, measure, and control them), we still do not measure
exactly the same result from one experiment to the next. The result of any single experiment
contains some random effect of noise. Often, we do not know exactly from where this noise
originates, yet we do suspect that it comes not just from one source. Rather, the observed
error is the net sum of many (say Ne) small random errors. A reasonable model for ε, the
random error in an experiment, is then

ε = c(2ζ1 − 1)+ c(2ζ2 − 1)+ · · · + c(2ζNe − 1) (7.53)

ζ j is a random variable whose value is determined by a coin toss,

ζ j =
{

1, if heads
0, if tails

(7.54)

and is independent of the values of the other error contributions. Thus, (2ζ j − 1) = ±1
With this model, the error in any single experiment is determined by the total number of
heads

∑Ne
j=1 ζ j in a set of Ne coin tosses.

The random walk problem

Models of Brownian motion and of the geometry of ideal polymer chains are based on the
concept of a random walk. Let us start at time t = 0 and flip a coin. If heads, we take a step
to the right of length l. If tails, we take a step to the left. We continue to do this, taking n
steps, and measure the net displacement x (our final position) (Figure 7.7).

Important probability distributions 329

After Ns steps (coin tosses) the net displacement that we have traveled is

x = l
n∑

j=1

(2ζ j − 1) ζ j =
{

1, if heads
0, if tails

(7.55)

The average (and most likely) displacement is zero, as we double back upon our path at
random,

〈x〉 = l

〈
n∑

j=1

(2ζ j − 1)

〉
= l

n∑
j=1

(2〈ζ j 〉 − 1) = l
n∑

j=1

(
2

(
1

2

)
− 1

)
= 0 (7.56)

but, the mean-squared displacement is not zero,

〈x2〉 =
〈[

l
n∑

j=1

(2ζ j − 1)

][
l

n∑
k=1

(2ζk − 1)

]〉
= l2

n∑
j=1

n∑
k=1

〈(2ζ j − 1)(2ζk − 1)〉

〈x2〉 = l2
n∑

j=1

n∑
k=1

〈ζ ′jζ ′k〉 ζ ′j = 2ζ j − 1 =
{

1, if heads
−1, if tails

(7.57)

Using the independence of the coin tosses,

〈ζ ′jζ ′k〉 = δ jk =
{

1, if j = k
0, if j �= k

(7.58)

we find that the mean-squared displacement is linear in the number of steps,

〈x2〉 = l2
n∑

j=1

n∑
k=1

〈ζ ′jζ ′k〉 = l2
n∑

j=1

n∑
k=1

δ jk = l2
n∑

j=1

(1) = l2n (7.59)

The binomial distribution

Now that we have seen some possible applications of this coin toss question, let us derive
the answer. First, let us say that we make ten coin tosses. We wish to compute the probability
of observing an exact ordered sequence of heads and tails, e.g.

H T T H H T H H T H

If the outcomes of each coin toss are independent, and if pH is the probability of a coin toss
returning heads and pT = 1− pH is the probability that it returns tails, the probability of
observing the exact sequence above is

pH × pT × pT × pH × pH × pT × pH × pH × pT × pH = p6
H p4

T (7.60)

In general, the probability of observing an exact ordered sequence of nH heads and nT tails
is pnH

H pnT
T . Note that the sequence above is only one of the possible sequences containing

nH heads and nT tails. Others include

H H T T H H T H T H
H H T H H T T H H T
H T H H T H T H H T

Since every sequence with the same number of heads and tails has the same probability of
being observed, the probability that we observe any sequence of nH heads and nT = n − nH

330 7 Probability theory and stochastic simulation

n
n n 1 n 2 n n

1
 1

2
 1

 11
1 1
2 1
 1
 11

Figure 7.8 The binomial distribution for four fair coin tosses.

tails (without regard to the order in which they appear) follows the binomial distribution

P(n, nH) =
(

n
nH

)
pnH

H pnT
T =

(
n

nH

)
pnH

H (1− pH)(n−nH) (7.61)

(
n

nH

)
is the number of possible sequences of n tosses with nH heads, and is known as a

binomial coefficient,(
n

nH

)
= n!

nH!(n − nH)!
n! = n × (n − 1)× · · · × 3× 2× 1 (7.62)

As a check, consider the case of n = 4, nH = 2, for which(
4
2

)
= 4!

2!(4− 2)!
= 4× 3× 2× 1

(2× 1)(2× 1)
= 24

4
= 6 (7.63)

The six possible sequences are

H H T T T H H T T T H H H T H T T H T H H T T H

For a fair coin,

P(n, nH) =
(

n
nH

)(
1

2

)nH
(

1

2

)nT

=
(

n
nH

)(
1

2

)n

(7.64)

hence, we have the distribution of sequences shown in Figure 7.8.
The optional MATLAB statistics toolkit contains several functions for evaluating the

binomial distribution. binornd generates random numbers according to the binomial dis-
tribution, binofit fits a binomial distribution to a data set, binostat computes the mean and
variance, binopdf returns the probability distribution, and the cumulative distribution and
its inverse are returned by binocdf and binoinv. Similar routines are available for a host of
other common probability distributions (see the toolkit documentation for a list).

Important probability distributions 331

The Gaussian (normal) distribution

Let us return to the example of the random walk, in which the net displacement after n steps
of length l is

x = l
n∑

j=1

(2ζ j − 1) ζ j =
{

1, if heads
0, if tails

(7.65)

If we perform n coin tosses, and nH are heads, the net displacement is

x

l
= nH − nT = nH − (n − nH) = 2nH − n (7.66)

Hence for a given displacement, the numbers of heads and tails are

nH = 1

2

(
n + x

l

)
nT = n − nH = 1

2

(
n − x

l

)
(7.67)

For a fair coin, we obtain from the binomial distribution,

P(n, nH) =
(

n
nH

)(
1

2

)n

=
[

n!

nH!(n − nH)!

](
1

2

)n

(7.68)

the probability of observing a net displacement x after n steps of length l,

P(x ; n, l) = n!

[(n + x/ l)/2]![(n − x/ l)/2]!

(
1

2

)n

(7.69)

We evaluate this equation in the limit n →∞, taking the natural logarithm,

ln[P(x ; n, l)] = ln(n!)− ln{[(n + x/ l)/2]!} − ln{[(n − x/ l)/2]!} − n ln 2 (7.70)

We remove the factorials by using Stirling’s approximation

ln(N !) = ln

(
N∏

m=1

m

)
=

N∑
m=1

ln(m) ≈
∫ N

1
ln xdx = N ln N − N (7.71)

Therefore, for large n, we have

ln[P(x ; n, l)] ≈ n ln n − n −
[

n + x/ l

2

]
ln

[
n + x/ l

2

]
+

[
n + x/ l

2

]

−
[

n − x/ l

2

]
ln

[
n − x/ l

2

]
+

[
n − x/ l

2

]
− n ln 2 (7.72)

After cancelling out terms, this simplifies to

ln[P(x ; n, l)] ≈ −
[

n + x/ l

2

]
ln

[
n + x/ l

2

]

−
[

n − x/ l

2

]
ln

[
n − x/ l

2

]
− n ln

(n

2

)
(7.73)

We further simplify the expression by noting

n ln
(n

2

)
=

{[
n + x/ l

2

]
+

[
n − x/ l

2

]}
ln
(n

2

)
(7.74)

332 7 Probability theory and stochastic simulation

hence,

ln[P(x ; n, l)] ≈ −
[

n + x/ l

2

]{
ln

[
n + x/ l

2

]
+ ln

(n

2

)}

−
[

n − x/ l

2

]{
ln

[
n − x/ l

2

]
+ ln

(n

2

)}
(7.75)

The rule ln(ab) = ln(a)+ ln(b) yields

ln[P(x ; n, l)] ≈ −
[

n + x/ l

2

]{
ln

[
n + x/ l

2

(
2

n

)]}

−
[

n − x/ l

2

]{
ln

[
n − x/ l

2

(
2

n

)]}

≈ −
[

n + x/ l

2

] {
ln
[
1+ x

nl

]}
−

[
n − x/ l

2

] {
ln
[
1− x

nl

]}
(7.76)

In the limit of large n, the high degree of backtracking in the random walk means that |x |
� nl, hence we use the Taylor expansions around x/(nl) = 0,

ln
[
1+ x

nl

]
≈ x

nl
− 1

2

(x

nl

)2
ln
[
1− x

nl

]
≈ − x

nl
− 1

2

(x

nl

)2
(7.77)

to obtain

ln[P(x ; n, l)] ≈ −
[

n + x/ l

2

]{
x

nl
− 1

2

(x

nl

)2
}
−

[
n − x/ l

2

]{
− x

nl
− 1

2

(x

nl

)2
}
(7.78)

Collecting terms yields the particularly simple result

ln[P(x ; n, l)] ≈ − x2

2nl2
(7.79)

Taking the exponential and renormalizing to
∫ +∞
−∞ P(x ; n, l)dx = 1 yields

P(x ; n, l) = 1√
2πnl2

exp

[
− x2

2nl2

]
(7.80)

Defining σ 2 = nl2 produces the Gaussian (normal) distribution

P(x ; σ) = 1

σ
√

2π
exp

[
− x2

2σ 2

]
(7.81)

We note by symmetry of the exponential argument that the average is zero:

〈x〉 = E(x) =
∫ +∞

−∞
x P(x ; σ)dx =

∫ +∞

−∞

x

σ
√

2π
exp

[
− x2

2σ 2

]
dx = 0 (7.82)

The variance is

var(x) = E[(x − E(x))2] =
∫ +∞

−∞
x2 P(x ; σ)dx =

∫ +∞

−∞

x2

σ
√

2π
exp

[
− x2

2σ 2

]
dx = σ 2

(7.83)
Therefore, σ is the standard deviation of the Gaussian distribution. The Gaussian distribu-
tion is plotted in Figure 7.9 for various values of σ .

Important probability distributions 333

1

1

12

1

2

− −2 −1 1 2

as
si

an
 r

ai
it

di
st

rit
in

σ = 2
σ =
σ = 1

Figure 7.9 Gaussian (normal) probability distributions with means of zero and various values of the
standard deviation.

The central limit theorem of statistics

We have seen that the binomial distribution of a random walk reduces to the Gaussian
distribution as n →∞. We now make this result more general.

Let ζ1, ζ2, . . . , ζn be a set of independent random variables with means µ j = E(ζ j) and
variances σ 2

j = var(ζ j). The distributions of these random variables need not be Gaussian.
According to the central limit theorem of statistics, the statistic

Sn = 1√
n

n∑
j=1

ζ j − µ j

σ j
(7.84)

itself a random variable, is normally distributed in the limit n →∞ with a variance of 1:

P(Sn) = 1√
2π

exp

[
− S2

n

2

]
as n →∞ (7.85)

This theorem is what makes the normal distribution “normal.”

The Gaussian distribution with nonzero mean

We define the probability distribution N (µ, σ 2) to be the normal distribution with a mean
µ and variance σ 2,

N (µ, σ 2) = P(x ; µ, σ) = 1

σ
√

2π
exp

[
− (x − µ)2

2σ 2

]
(7.86)

E(x) = 〈x〉 = µ var(x) = σ 2

334 7 Probability theory and stochastic simulation

In MATLAB, we generate a random number distributed according to N(0, 1) using randn.
From such a random number r, we obtain a random number r ′ distributed according to
N (µ, σ 2) from the rule

r ′ = µ+ σr (7.87)

or we can use the statistics toolkit function normrnd to directly generate random numbers
from N (µ, σ 2). Both randn and normrnd can also generate matrices of independent random
numbers.

The Poisson distribution

We next consider another limiting case of the binomial distribution. Let us perform a number
n of Bernoulli trials in which we have for each a probability p of “success” and a probability
(1− p) of “failure”. For each trial, we define the random variable

ζ j =
{

1, if trial is a success
0, if trial is a failure

(7.88)

The expectation is E(ζ j) = p and the variance is

var(ζ j) = E
(
ζ 2

j

)− [E(ζ j)]
2 = p − [p]2 = p(1− p) (7.89)

The total number of successes in the trial, itself a random variable, is

ζ =
n∑

j=1

ζ j E(ζ) =
n∑

j=1

E(ζ j) =
n∑

j=1

(p) = pn (7.90)

As each trial is independent,

var(ζ) =
n∑

j=1

var(ζ j) =
n∑

j=1

p(1− p) = np(1− p) (7.91)

This sum is distributed according to the binomial distribution,

P(ζ ; n, p) =
(

n
ζ

)
pζ (1− p)n−ζ (7.92)

We now derive a limiting form of this probability distribution that is valid in the limit n →
∞ when the probability of success in any single trial is very small, p � 1. First, from the
series expansion

e−p ≈ 1− p + p2

2
− · · · (7.93)

we obtain for p � 1, and the corresponding condition ζ� n,

(1− p)n−ζ ≈ (e−p)n−ζ ≈ (e−p)n = e−pn (7.94)

Writing the binomial coefficient explicitly yields

P(ζ ; n, p) ≈ pζ

ζ !
e−pn

[
n!

(n − ζ)!

]
(7.95)

Important probability distributions 335

Next, we take the natural logarithm and apply Stirling’s approximation,

ln

[
n!

(n − ζ)!

]
= ln(n!)− ln[(n − ζ)!] ≈ n ln n − n − (n − ζ) ln(n − ζ)+ n − ζ

≈ n ln n − n − (n − ζ) ln(n − ζ)+ n − ζ ≈ ζ ln n (7.96)

Hence, [
n!

(n − ζ)!

]
≈ nζ (7.97)

and the binomial distribution reduces to the Poisson distribution

P(ζ ; n, p) = (pn)ζ

ζ !
e−pn (7.98)

with the normalization
n∑

ζ=0

P(ζ ; n, p) = e−pn
n∑

ζ=0

(pn)ζ

ζ !
= e−pne+pn = 1 (7.99)

and the same expectation and variance as the binomial distribution,

E(ζ) = pn var(ζ) = np(1− p) (7.100)

The statistics toolkit offers several functions for the Poisson distribution, whose value is
returned by poisspdf. The cumulative distribution and its inverse are returned by poisscdf
and poissinv. To fit a Poisson distribution to a data set use poissfit; the mean and standard
deviation are returned by poissstat. Random numbers are returned by poissrnd.

A classic application of the Poisson distribution is the question

If we buy a very large number n of lottery tickets, each with a very small probability p of winning,
what is the probability that we will have bought at least one winner?

Applying the Poisson distribution, this probability is

P(ζ ≥ 1; n, p) =
n∑

ζ=1

P(ζ ; n, p) = 1− P(0; n, p) = 1− e−pn (7.101)

The Poisson distribution finds common use in the study of many physical phenomena. For
example, consider the case of anionic living polymerization. Using an initiator such as
n-butyl lithium that forms a carbanion, we can polymerize vinyl monomers (Figure 7.10).
Initiation is rapid, so that we start growing each chain at the same time. In a very small
time interval �t, the probability that we add a monomer unit to a specific chain during
this interval is kp[M](�t), where kp is a propagation rate constant and [M] is the monomer
concentration. To account for the changing monomer concentration, we define a scaled
time

τ = kp

∫ t

0
[M](t ′)dt ′ (7.102)

and take n steps forward in τ , each of duration �τ . The probability of adding a monomer

336 7 Probability theory and stochastic simulation

2 2 2 i +

=

2 2 2 2
i +

i +

=

2 2 2 2 n

= = 2

=

Figure 7.10 Anionic polymerization of a block copolymer.

unit during this time interval is

p = kp[M](�t) = �τ (7.103)

Taking this event to be a success, and taking the limit �τ → 0, n →∞ so that the Poisson
distribution applies, we find that the probability that a particular chain has grown to a length
x, starting from a length x = 1 at τ = 0 is

P(x ; n, �τ) = [(�τ)n](x−1)

(x − 1)!
e−[(�τ)n] (7.104)

The distribution of chain lengths at a scaled time τ = n(�τ) is

P(x ; τ) = τ x−1

(x − 1)!
e−τ (7.105)

and the average chain lengths and polydispersity are

D Pn = 1+ τ D Pw = 1+ τ + τ

1+ τ
Pdisp = 1+ τ

(1+ τ)2
(7.106)

In the limit of very long chain lengths, Pdisp → 1; i.e., the chains are of uniform length. This
ability to generate chains of precise, uniform lengths, combined with the ability to switch
monomers in the middle of the synthesis to produce block copolymers, makes anionic
living polymerization an important tool in polymer science, particularly in the formation of
nanoscale-ordered materials through microphase separation.

Random vectors and multivariate distributions

We now extend the concept of random variables to treat random vectors, for which we need
a number of additional definitions.

Definition Covariance and correlation of two random variables
Let X and Y be two random variables. The covariance of X and Y is

cov(X, Y) = E{[X − E(X)][Y − E(Y)]} (7.107)

Random vectors and multivariate distributions 337

A related concept is the correlation of X and Y, corr (X, Y) = cov(X, Y)/
√

var(X)+ var(Y).
If X and Y are independent, cov(X, Y) = 0; however, a covariance of zero does not neces-
sarily imply that the two variables must be independent (although it suggests that they are).
If cov(X, Y) > 0, then when X is greater than its mean E(X), Y tends also to be greater than
its mean E(Y). Conversely, if cov(X, Y) < 0, then if X > E(X), it is more probable that Y
is less than E(Y). A nonzero covariance means only that the two variables tend to behave in
a related manner, it does not mean that there is a cause and effect relationship among them.
Asserting the latter is a common fallacy.

Definition Covariance matrix of a random vector
Let v be a vector whose components are random variables, not necessarily independent.
Then, the covariance matrix of v, cov(v), has elements

[cov(v)]i j = E{[vi − E(vi)][v j − E(v j)]} (7.108)

If each component of v is independent of all others, cov(v) is diagonal,

cov(v) =

var(v1)
var(v2)

. . .

var(vN)

 (7.109)

If in addition, each component of v has the same variance σ 2, then

cov(v) = σ 2 I (7.110)

If v = Ax, where A is a constant matrix and x is another random vector, then

cov(v) = cov(Ax) = A[cov(x)]AT (7.111)

If v is a random vector and c is a constant vector,

var(c · v) = var
(
cTv

) = cT[cov(v)]c = c · [cov(v)]c (7.112)

The covariance matrix is always symmetric and positive-definite.

Definition Multivariate Gaussian (normal) distribution
Let v be a random N-dimensional vector with a mean µ = E(v) and a covariance matrix
�. Since � is symmetric, positive-definite, �−1 always exists. The Gaussian (normal)
distribution of v is

P(v;µ, �) = 1

(2π)N/2
√|�| exp

{
−1

2
(v− µ)T�−1(v− µ)

}
(7.113)

The Boltzmann and Maxwell distributions

Many applications of probability theory to chemical engineering arise in statistical mechan-
ics, the microscopic theory that underpins thermodynamics. Consider a system whose state
is described by the state vector q, such that the energy in this microstate is E(q). A key result
of statistical mechanics is the Boltzmann distribution. For a system closed to its surround-
ings with respect to the exchange of mass, held at a constant temperature T and volume V,

338 7 Probability theory and stochastic simulation

the probability of observing the system in microstate q is

P(q) = 1

Q
exp

[
− E(q)

kbT

]
Q =

∑
q

exp

[
− E(q)

kbT

]
(7.114)

kb is Boltzmann’s constant, the ideal gas constant R divided by Avagadro’s number. T is the
absolute temperature, in kelvin. Applying this formula to the kinetic energy distribution
of a moving particle of mass m at thermal equilibrium, we obtain the Maxwell velocity
distribution:

P(v) ∝ exp

[
−m|v|2

2kbT

]
(7.115)

Brownian dynamics and stochastic differential equations (SDEs)

We next consider an important application of probability theory to physical science, the
theory of Brownian motion, and introduce the subject of stochastic calculus. Let us consider
the x-direction motion of a small spherical particle immersed in a Newtonian fluid. As
observed by the botanist Robert Brown in the early 1800s, the motion of the particle is very
irregular, and apparently random. Let Vx (t) be the x-direction velocity as a function of time.
For a particle of mass m and radius R in a fluid of viscosity µ, the equation of motion is

m
dVx

dt
= −ζ Vx + FR(t) (7.116)

where ζ = 6πµR is the drag constant (predicted for very small particles by Stokes’ law)
and FR(t) is a random, fluctuating force due to collisions between the particle and the fluid
molecules. Even though Vx (t) fluctuates randomly, we can characterize deterministically
the velocity autocorrelation function CVx (t). Let Vx (t1) be the velocity at time t1 and Vx (t2)
be the velocity at time t2. If we measure the product of these two values and take the
average, we obtain a function that should depend only upon the time elapsed between the
two measurements,

〈Vx (t1)Vx (t2)〉 = CVx (t2 − t1) = 〈Vx (t1 − t2)Vx (0)〉 (7.117)

This function should have the property CVx (−t) = CVx (t), and at t = 0 should agree with
the average 〈V 2

x 〉 predicted by the Maxwell velocity distribution,

CVx (0) = 〈
V 2

x

〉 = kbT

m
(7.118)

Also, since the velocities measured at very different times should be uncorrelated, we expect
limt→∞ CVx (t) = 0. In general, we expect this correlation function to take the approximate
form of an exponential decay,

CVx (t ≥ 0) ≈ CVx (0)e−t/τVx (7.119)

where τVx is a velocity correlation time.
How is τVx related to the properties of the particle and fluid? Let us say that the particle

is moving through the fluid at some velocity, and then at time t = 0, we turn off the random

Brownian dynamics and SDEs 339

force and allow the drag force to dissipate the kinetic energy. The particle motion then
follows

m
dVx

dt
= −ζ Vx ⇒ Vx (t) = Vx (0) exp

[
−ζ t

m

]
(7.120)

Therefore, the velocity correlation time is

τVx =
m

ζ
=

(
4

3
πρR3

)(
1

6πµR

)
= 2ρR2

9µ
(7.121)

For the example case of a neutrally buoyant particle in water, ρ = 103 kg/m3, µ = 10−3Pa s.
For a very small particle with a diameter of 10 nm, on the size of macromolecules, the
velocity autocorrelation time is

τVx ∼
(103 kg/m3)(10−8 m)2

(10−3 Pa s)
= 103−16+3 s = 10−10 s (7.122)

Even for a much larger particle of 100 µm = 10−4 m, the correlation time is still quite
short,

τVx ∼
(103 kg/m3)(10−4 m)2

(10−3 Pa s)
= 103−8+3 s = 10−2 s (7.123)

Now, if we take velocity measurements at times much further apart than τVx , the results will
be independent and uncorrelated from each other. From the above analysis, we see that the
correlation times of a particle in water are quite short. Thus, in many applications where
we are only concerned with the dynamics of the particle on time scales larger than τVx , we
can neglect the effect of velocity correlation and derive our governing equation in the limit
τVx → 0. Even in this limit, however, we must have a nonzero value of 〈Vx (0)Vx (0)〉 =
〈[Vx (0)]2〉; therefore, we write our approximate velocity autocorrelation as

〈Vx (t)Vx (0)〉 = 2Dδ(t) (7.124)

where δ(t) is the Dirac delta function:

δ(t) = lim
σ→0

1

σ
√

2π
exp

[
− x2

2σ 2

] ∫ +∞

−∞
f (t)δ(t)dt = f (0) (7.125)

Strictly speaking, the Dirac delta function is not a function at all, but is rather defined solely
through the integral relation in (7.125). See the discussion of the theory of distributions in
Stakgold (1979).

To see that D is consistent with the common definition of the diffusivity, we compute the
average displacement over the time period [0, t],

�x(t) =
∫ t

0
Vx (t1)dt1 (7.126)

with

〈[�x(t)]2〉 =
〈[∫ t

0
Vx (t1)dt1

] [∫ t

0
Vx (t2)dt2

]〉
=

∫ t

0

∫ t

0
〈Vx (t1)Vx (t2)〉dt1dt2 (7.127)

340 7 Probability theory and stochastic simulation

Using the fact that the statistical properties of the velocity are independent of absolute
time,

〈Vx (t1)Vx (t2)〉 = 〈Vx (t1 − t2)Vx (0)〉 (7.128)

and taking the limit τVx → 0, we have

〈Vx (t1)Vx (t2)〉 = 2Dδ(t1 − t2) (7.129)

Therefore,

〈[�x(t)]2〉 =
∫ t

0

∫ t

0
[2Dδ(t1 − t2)]dt1dt2 = 2D

∫ t

0

∫ t

0
δ(t1 − t2)dt1dt2

= 2D

∫ t

0
(1)dt2 = 2Dt (7.130)

The mean-squared displacement varies linearly with time, and D is indeed the diffusivity,
as commonly defined.

The Langevin equation

We again consider the 1-D motion of a spherical particle, and now include a conservative
force arising from an external potential energy field U (x). The equation of motion is then

m
dVx

dt
= −ζ Vx − dU

dx
+ FR(t) (7.131)

We want to take the limit τVx → 0. As τVx = m/ζ , we achieve this limit by letting m → 0,
but retain the constant value of the drag constant ζ (i.e., we neglect inertial effects). The
equation of motion then becomes

Vx = dx

dt
= −1

ζ

dU

dx
+ 1

ζ
FR(t) (7.132)

This is known as the Langevin equation. Assuming that the statistical properties of the
random force are independent of U (x), we analyze FR(t) in the absence of an external
potential, where

Vx (t) = dx

dt
= 1

ζ
FR(t) (7.133)

The autocorrelation of this equation yields the statistical properties of FR(t),

〈FR(t)FR(0)〉 = ζ 2〈Vx (t)Vx (0)〉 = 2Dζ 2δ(t)
(7.134)〈FR(t)〉 = 0

We next reintroduce the potential U (x) and integrate the Langevin equation over an interval
from time t to time t +�t ,

x(t +�t)− x(t) = − 1

ζ

∫ t+�t

t

dU

dx

∣∣∣∣
x(t ′)

dt ′ + 1

ζ

∫ t+�t

t
FR(t ′)dt ′ (7.135)

Brownian dynamics and SDEs 341

Assuming the gradient of the potential to be constant over the interval �t,

x(t +�t)− x(t) = −1

ζ

(
dU

dx

)
(�t)+ XR(t, t +�t) (7.136)

where we have defined the random displacement due to the random force,

XR(t, t +�t) = 1

ζ

∫ t+�t

t
FR(t ′)dt ′ (7.137)

The Wiener process

Let us consider the statistical properties of the random displacement (7.137). First, we see
that the average displacement is zero:

〈XR(t, t +�t)〉 = 1

ζ

∫ t+�t

t
〈FR(t ′)〉dt ′ = 0 (7.138)

Next, we compute the autocorrelation function of XR:

〈XR(t, t +�t)XR(t ′, t ′ +�t)〉 =
〈[

1

ζ

∫ t+�t

t
FR(t1)dt1

][
1

ζ

∫ t ′+�t ′

t ′
FR(t2)dt2

]〉

= 1

ζ 2

∫ t+�t

t

{∫ t ′+�t

t ′
〈FR(t1)FR(t2)〉dt2

}
dt1

(7.139)

Substituting 〈FR(t1)FR(t2)〉 = 2Dζ 2δ(t1 − t2) yields

〈XR(t, t +�t)XR(t ′, t ′ +�t)〉 = 2D

∫ t+�t

t

{∫ t ′+�t

t ′
δ(t1 − t2)dt2

}
dt1 (7.140)

If t ′ �= t , as �t → 0, the right-hand side of (7.140) goes to zero as there is no t2 ∈ [t ′, t ′ +
�t] that equals any t1 ∈ [t, t +�t]. But, if t ′ = t , then

〈XR(t, t +�t)XR(t, t +�t)〉 = 2D

∫ t+�t

t

{∫ t+�t

t
δ(t1 − t2)dt2

}
dt1

= 2D

∫ t+�t

t
{1} dt1 = 2D(�t) (7.141)

Therefore, the correlation function of the displacement due to the random force during a
time interval �t is

〈XR(t, t +�t)XR(t ′, t ′ +�t)〉 = 2D(�t)δ(t − t ′) (7.142)

We see that the statistical properties of this random displacement depend upon the value of
the diffusivity and upon the time step �t. We separate these two dependences by defining
the random variable �Wt with the statistical properties,

〈�Wt 〉 = 0 〈�Wt�Wt ′ 〉 = (�t)δ(t − t ′) (7.143)

such that

XR(t, t +�t) = (2D)1/2�Wt (7.144)

�Wt is said to be the finite increment of a Wiener process.

342 7 Probability theory and stochastic simulation

Let us take a random walk in one dimension, stepping a distance l every δt time interval.
After n such steps, the elapsed time is t = n(δt). The mean-squared displacement during
the random walk is

〈[�x(t)]2〉 = l2n = l2

(
t

δt

)
(7.145)

Now, to be a model of diffusive motion, we must have the mean-squared displacement
growing linearly with elapsed time; therefore, we set

l2 = δt l =
√

δt (7.146)

so that

〈[�x(t)]2〉 = t (7.147)

In the limit δt → 0, this random walk becomes a Wiener process. A Wiener process has
the same long-time behavior as a random walk with steps of

√
δt each δt time period, but

the steps are taken infinitely close together. This is unphysical; however, when modeling
Brownian diffusion, we are really only interested in behavior on time scales longer than the
velocity autocorrelation time.

Note that for δt « 1,
√

δt » δt . The “derivative” of this process for small, but finite δt,
is approximately

�x

�t
∼ l

δt
=
√

δt

δt
= 1√

δt
(7.148)

Thus, as δt → 0, the “derivative” of x(t) diverges. In fact, it diverges so badly that the
integral

x(t + δt)− x(t) =
∫ t+δt

t

dx

dt

∣∣∣∣
t ′

dt ′ (7.149)

is not defined according to the rules of deterministic calculus.

Stochastic Differential Equations (SDEs)

The lack of a proper definition for (7.149) means that we cannot apply the traditional rules
of calculus to Brownian motion; rather, we must use the special rules of stochastic calculus.
Thus, integrals of the form of (7.137) and ODEs of the form of (7.132) are not to be defined
using deterministic calculus as we have done above. Let us now write (7.132) in a form that
is well defined by multiplying it by dt,

dx = −1

ζ

(
dU

dx

)
dt + 1

ζ
FR(t)dt (7.150)

For a small time interval, (7.144) yields

1

ζ
FRdt = d XR = (2D)1/2dWt (7.151)

Brownian dynamics and SDEs 343

dWt is a differential update of a Wiener process. We are now faced with choosing the time
in [t, t + dt] at which we evaluate dU/dx ; here, we do so at the beginning of the time step,
to obtain an SDE that is an Itô-type SDE,

dx = −1

ζ

(
dU

dx

∣∣∣∣
x(t)

)
dt + [2D]1/2dWt (7.152)

Equation (7.152) is also called the Langevin equation for the particle.
For a description of SDEs, see Kloeden & Platen (2000). An abbreviated discussion is

found in Öttinger (1996), with a focus on polymer science.
The simplest rule to integrate (7.152) is the explicit Euler SDE method:

x(t +�t)− x(t) = −1

ζ

(
dU

dx

∣∣∣∣
x(t)

)
(�t)+ [2D]1/2(�Wt) (7.153)

�Wt is an approximation to dWt for a finite �t and is drawn at random from a Gaussian
distribution with mean µ = 0 and variance σ 2 = �t . In MATLAB, we generate �Wt by the
code,

dW t = sqrt(dt) * randn;

BD 1D.m uses the explicit Euler method to simulate the Brownian dynamics of a spherical
particle in a quadratic energy well, U (x) = kspx2/2 with ksp = 1. Trajectories are plotted
in Figure 7.11 for ζ = 1, D = 1 and various �t. As �t decreases, the path fluctuates more
wildly for short times, but has the same long-time properties.

Itô’s stochastic calculus

While the explicit Euler method is simple, it is not very accurate. For a deterministic
differential equation, we build higher-order methods through Taylor series expansions;
however, the rules of stochastic calculus are different. Consider the SDE

d X = a(t, X)dt + b(t, X)dWt (7.154)

Using tk+1 − tk = �t, Xtk = X (tk), we have an exact update

Xtk+1 − Xtk =
∫ tk+1

tk

a(t, X (t))dt +
∫ tk+1

tk

b(t, X (t))dWt (7.155)

In deterministic calculus (no dWt term), we expand a(t, X) in time using the differential da =
(∂a/∂t)dt + (∂a/∂ X)(d X/dt)dt ; however, here we have a stochastic integral involving a
Wiener process. How do we interpret this integral, and what is the proper form of differential
for a stochastic process?

We use here Itô’s stochastic calculus, in which we approximate the stochastic integral
by quadrature using the values at the beginning of each subinterval:∫ tF

0
b(t)dWt ≈

N∑
j=1

b(t j−1)
[
Wt j − Wt j−1

]
t j = j tF

N
(7.156)

344 7 Probability theory and stochastic simulation

t

−2

−1

t 1

2

∆t 1

1

t

−

−2

t

2

∆t 1

1
t

−

−2

t

2

∆t 1

1

t

−2

−1

t 1

2

∆t 1

1

Figure 7.11 Brownian dynamics trajectories of the 1-D motion of a particle in a quadratic potential.
As the time step is decreased, the path becomes more irregular at short times, but the long-time
properties remain similar.

Next, we write the differential of any F(t, X), with X being governed by the SDE (7.154).
Assuming F depends continuously upon t and X, we use an expansion to second order:

F(t + dt, X (t + dt))− F(t, X) ≈ ∂ F

∂t

∣∣∣∣
(t,X)

dt + ∂ F

∂ X

∣∣∣∣
(t,X)

d X + 1

2

∂2 F

∂ X2

∣∣∣∣
(t,X)

d X2

+ 1

2

∂2 F

∂ X∂t

∣∣∣∣
(X,t)

d Xdt + 1

2

∂2 F

∂t2

∣∣∣∣
(t,X)

dt2 (7.157)

For the first-order term in X, we substitute the SDE (7.154),

∂ F

∂ X

∣∣∣∣
(t,X)

d X = ∂ F

∂ X

∣∣∣∣
(t,X)

[a(t, X)dt + b(t, X)dWt] (7.158)

Substituting similarly for the mixed partial derivative term,

1

2

∂2 F

∂ X∂t

∣∣∣∣
(X,t)

d Xdt ≈ 1

2

∂2 F

∂ X∂t

∣∣∣∣
(X,t)

[a(t, X)dt + b(t, X)dWt]dt (7.159)

As dWt is a random number of magnitude
√

dt , this term is of higher overall order in time
than (7.158) and thus is dropped. Similarly, the last term of (7.157) that is second order in
time is dropped. We then have

d F ≈ ∂ F

∂t

∣∣∣∣
(t,X)

dt + ∂ F

∂ X

∣∣∣∣
(t,X)

[a(t, X)dt + b(t, X)dWt]+ 1

2

∂2 F

∂ X2

∣∣∣∣
(t,X)

d X2 (7.160)

Brownian dynamics and SDEs 345

Substituting for d X2,

d X2 = [adt + bdWt]
2 = a2(dt)2 + 2ab(dt)(dWt)+ b2(dWt)

2 (7.161)

While the first two terms are of higher order than 1 in time, the last term is not, as dWt ∼√
dt . Thus, we must retain it, and replace it with its “average” value (dWt)2 → dt .
We provide here a heuristic argument for accepting this replacement. Consider approxi-

mating the Wiener process as a random walk in which in one unit of time we make n steps
each of length l. After one unit time interval, the mean-squared displacement is nl2 = 1.
Thus, we obtain the same mean-square displacement if we replace the Wiener process by
a random walk with l2 = n−1 = dt . Thus, the replacement (dWt)2 → dt is valid, in the
“mean-square sense”.

Using d X2 ≈ b2(dWt)2 → b2dt in (7.160), we have Itô’s lemma

d F =
[

∂ F

∂t

∣∣∣∣
(t,X)

+ ∂ F

∂ X

∣∣∣∣
(t,X)

a(t, X)+ 1

2

∂2 F

∂ X2

∣∣∣∣
(t,X)

[b(t, X)]2

]
dt + ∂ F

∂ X

∣∣∣∣
(t,X)

b(t, X)dWt

(7.162)
This demonstrates the major difference between the stochastic and deterministic forms of
calculus. In stochastic calculus, we expand functions to higher orders, replace (dWt)2 → dt ,
and then keep all terms that contribute up to the desired order.

We now use this formalism to demonstrate the derivation of a higher order integration
method than the explicit Euler one. In the explicit Euler method we neglect the time-variation
of a and b over the time step. This is particularly bad for the second integral as dWt is of
order t1/2, and thus the explicit Euler method is only 1/2-order accurate for predicting the
actual trajectory. Thus, let us increase the order of accuracy of this term by using a t1/2

accurate expansion of b in tk ≤ t ≤ tk+1:

b(t, Xt) ≈ b(tk, Xtk)+ ∂b

∂ X

∣∣∣∣
(tk ,Xtk)

∂ X

∂W

∣∣∣∣
(tk ,Xtk)

[Wt − Wtk] (7.163)

Using ∂ X/∂W = b, we have for the second integral of (7.155),∫ tk−1

tk

b(t, X (t))dWt ≈
∫ tk+1

tk

{
b(tk, Xtk)+ ∂b

∂ X

∣∣∣∣
(tk ,Xtk)

b(tk, Xtk)[Wt − Wtk]

}
dWt

(7.164)
This yields

Xtk+1 ≈ Xtk + a
(
tk, Xtk

)
(tk+1 − tk)+ b

(
tk, Xtk

)[
Wtk+1 − Wtk

]
+ ∂b

∂ X

∣∣∣∣
(tk ,Xtk)

b
(
tk, Xtk

) ∫ tk+1

tk

[
Wt − Wtk

]
dWt (7.165)

The last term is the leading-order correction to the explicit Euler method to raise the order
of accuracy to 1. We next evaluate the stochastic integral

Itk ,tk+1 =
∫ tk+1

tk

[
Wt − Wtk

]
dWt = 1

2

{[
Wtk+1 − Wtk

]2 − (tk+1 − tk)
}

(7.166)

To show that (7.166) is valid, we define

G(t, Y) = 2It,tk+1 = [Y − Wtk]2 − (t − tk) dY = dWt (7.167)

346 7 Probability theory and stochastic simulation

and apply (7.162),

dG = [− 1+ 1
2 (2)[1]2

]
dt + 2

[
Y − Wtk

]
(1)dWt =

[
Y − Wtk

]
dWt (7.168)

to yield the integrand of (7.166). Using (7.166) in (7.165), we obtain the Mil’shtein rule

Xtk+1 ≈ Xtk + a(tk, Xtk)(�t)+ b(tk, Xtk)(�Wt)+ ∂b

∂ X

∣∣∣∣
(tk ,Xtk)

b(tk, Xtk) 1
2 [(�Wt)2 −�t]

(7.169)
Further higher-order methods are discussed in Kloeden & Platen (2000).

Example. Stochastic calculus in quantitative finance

Stochastic calculus is used heavily in quantitative finance, a significant employer of numerate
engineers. In Problem 6.B.5, we solved the Black–Scholes equation for the fair value of an
option. Here, we show how this equation is obtained, through stochastic calculus.

Consider the spot (market) price S(t) of some financial asset as a function of time. We
sample the price at uniform time periods tk = k(�t) and let Sk = S(tk). A reasonable model
of the behavior of many assets is the lognormal random walk, which assumes that the return
between successive time periods

Rk = Sk+1 − Sk

Sk
(7.170)

is normally distributed so that the spot price is governed by the SDE

d S = µSdt + σ SdWt (7.171)

µ is the drift rate, and is computed from a sequence of returns by

µ = 1

Ns(�t)

Ns∑
k=1

Rk (7.172)

σ is the volatility of the asset, and is estimated from

σ 2 = 1

(Ns − 1)(�t)

Ns∑
k=1

(Rk − 〈R〉)2 〈R〉 = µ(�t) (7.173)

In a simple type of derivative, a European option, we purchase at time t the right to either
buy (a call option) or sell (a put option) the underlying asset at some time T > t in the future
at an exercise price E. Thus, at time T, if we purchase the option, we will have a payoff

payoff(S(T)) =
{

max(S(T)− E, 0), call option
max(E − S(T), 0), put option

(7.174)

What is the fair price V (S, t) of this option at t < T when the spot price of the underlying
asset is S?

To compute this value, assume that we purchase an option and at the same time short
(i.e., sell assets we don’t actually have – this is often possible and legal) a quantity � of the
underlying asset. The value of this portfolio is � = V (S, t)−�S. Applying (7.162), the

Brownian dynamics and SDEs 347

SDE for the portfolio value is

d� =
{

∂V

∂t
+ ∂V

∂S
(µS)+ 1

2

∂2V

∂S2
[σ 2S2]

}
dt + ∂V

∂S
(σ S)dWt −�[µSdt + σ SdWt]

(7.175)
Collecting terms, we have

d� =
{

∂V

∂t
+ µS

(
∂V

∂S
−�

)
+ 1

2
σ 2S2 ∂2V

∂S2

}
dt + σ S

(
∂V

∂S
−�

)
dWt (7.176)

Now, if we make the special choice � = ∂V/∂S, then the random nature of the portfolio
disappears and we have the purely deterministic result

d� =
{

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2

}
dt (7.177)

Such reduction of risk is known as hedging, and the strategy above is called delta-hedging.
Of course, in practice not all risk is removed as the model is not completely accurate. Also,
this approach involves modifying � continually as ∂V/∂S changes, which exposes the
holder to transaction costs that should be modeled as well to design an optional hedging
strategy.

If we follow this strategy, our model predicts that all risk will have been removed. It
would not be fair if this strategy were to yield higher or lower returns than the alternative
risk-free strategy of taking the initial value of our portfolio �(S, t) and putting it in a bank
account to earn interest at a rate r. Using this “no free lunch,” or “no arbitrage,” argument,
we should have

d� = r�dt = r (V −�S)dt{
∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2

}
dt = r

(
V − ∂V

∂S
S

)
dt (7.178)

This yields the famous Black–Scholes equation

∂V

∂t
+ r S

∂V

∂S
+ 1

2
σ 2S2 ∂2V

∂S2
− r V = 0 (7.179)

which is solved backwards in time starting at the final condition (7.174). For more on the
modeling of derivatives, consult Wilmott (2000).

The Fokker–Planck equation

We have proposed an SDE model (7.152) for the 1-D Brownian motion of a particle, and
now relate this SDE to the time-evolution of the probability distribution p(t, x), where the
probability of finding the particle at time t in [x, x + dx] is dx . We know that at equilibrium,
this probability density should converge to the Boltzmann distribution

peq(x) = Z−1 exp

[
−U (x)

kbT

]
Z =

∫ +∞

−∞
exp

[
−U (x)

kbT

]
dx (7.180)

Figure 7.12 shows the plot produced by BD 1D.m that contains the measured probability
distribution of x generated by a histogram of the Brownian dynamics trajectory along with

348 7 Probability theory and stochastic simulation

2

2

1

1

−

tend = 1
∆t = 1

ine is anatica
Btann distr i tin

 1

ars are ist ra
 B tr aectr

Figure 7.12 Comparison between probability distribution generated by Brownian dynamics (BD)
trajectory and that from Boltzmann distribution.

the expected result at equilibrium with kbT = 1. We see from their agreement that somehow
setting ζ = 1 and D = 1 results in the correct sampling at kbT = 1.

What is the fundamental relationship between ζ and D, and how can we obtain an equation
for the probability distribution from the SDE? Let us frame our discussion somewhat more
generally for the SDE

d X = a(t, X)dt + b(t, X)dWt (7.181)

The update in a time interval δt is

Xt+δt − Xt =
∫ (t+δt)

t
a(t ′, Xt ′)dt ′ +

∫ (t+δt)

t
b(t ′, Xt ′)dWt ′ (7.182)

Consider some F(x), for which (7.162) yields the differential at t′,

d F =
[

∂ F

∂ X

∣∣∣∣
(t ′,Xt ′)

a(t ′, Xt ′)+ 1

2

∂2 F

∂ X2

∣∣∣∣
(t ′,Xt ′)

[b(t ′, Xt ′)]
2

]
dt + ∂ F

∂ X

∣∣∣∣
(t ′,Xt ′)

b(t ′, Xt ′)dWt ′

(7.183)
Integrating this differential over the path Xt → Xt+δt yields

F(Xt+δt)− F(Xt) =
∫ (t+δt)

t

[
∂ F

∂ X

∣∣∣∣
(t ′,Xt ′)

a(t ′, Xt ′)+ 1

2

∂2 F

∂ X2

∣∣∣∣
(t ′,Xt ′)

[b(t ′, Xt ′)]
2

]
dt ′

+
∫ (t+δt)

t

∂ F

∂ X

∣∣∣∣
(t ′,Xt ′)

b(t ′, Xt ′)dWt ′ (7.184)

Let us define an operator Lt that generates an “expected time derivative,”

Lt F(x) = lim
δt→0

1

δt
{E[F(Xt+δt)|Xt = x]− F(x)} (7.185)

Brownian dynamics and SDEs 349

Taking the expectation of (7.184) over a very small time step, the stochastic contribution
cancels out as 〈dWt ′ 〉 = 0. Thus,

Lt F(x) =
(

∂ F

∂x

)
a(t, x)+ 1

2

(
∂2 F

∂x2

)
[b(t, x)]2 (7.186)

Let p(t, x |t ′, x ′) be the transition probability that if the particle is at x′ at time t′, then at
time t, it is at x. Then, we could write (7.185) as

Lt F(x) = lim
δt→0

1

δt

{∫ +∞

−∞
F(x ′′)p(t + δt, x ′′|t, x)dx ′′ − F(x)

}
(7.187)

Let us multiply (7.187) by p(t, x |t ′, x ′) with t′ < t and integrate over x:∫ +∞

−∞
[Lt F(x)]p(t, x |t ′, x ′)dx

= lim
δt→0

1

δt

{∫ +∞

−∞

[∫ +∞

−∞
F(x ′′)p(t + δt, x ′′|t, x)dx ′′

]
p(t, x |t ′, x ′)dx

−
∫ +∞

−∞
F(x)p(t, x |t ′, x ′)dx

}
(7.188)

We now use the Chapman–Kolmogorov equation,∫ +∞

−∞
p(t + δt, x ′′|t, x)p(t, x |t ′, x ′)dx = p(t + δt, x ′′|t ′, x ′) (7.189)

to write (7.188) as∫ +∞

−∞
[Lt F(x)]p(t, x |t ′, x ′)dx

= lim
δt→0

1

δt

{∫ +∞

−∞
F(x ′′)p(t + δt, x ′′|t ′, x ′)dx ′′ −

∫ +∞

−∞
F(x)p(t, x |t ′, x ′)dx

}
(7.190)

In the first integral on the right-hand side x ′′ is only a dummy variable of integration, and
we are free to replace it with x,∫ +∞

−∞
[Lt F(x)]p(t, x |t ′, x ′)dx

= lim
δt→0

1

δt

{∫ +∞

−∞
F(x)p(t + δt, x |t ′, x ′)dx −

∫ +∞

−∞
F(x)p(t, x |t ′, x ′)dx

}
(7.191)

Collecting the integrals on the right-hand side, taking the limit δt → 0, and using the finite
difference approximation

∂

∂t
p(t, x |t ′, x ′) ≈ 1

δt
[p(t + δt, x |t ′, x ′)− p(t, x |t ′, x ′)] (7.192)

we have∫ +∞

−∞
[Lt F(x)]p(t, x |t ′, x ′)dx =

∫ +∞

−∞
F(x)

[
∂

∂t
p(t, x |t ′, x ′)

]
dx (7.193)

350 7 Probability theory and stochastic simulation

If we define the adjoint operator L†
t such that∫ +∞

−∞
[Lt F(x)]p(t, x |t ′, x ′)dx =

∫ +∞

−∞
F(x)[L†

t p(t, x |t ′, x ′)]dx (7.194)

then (7.193) becomes∫ +∞

−∞
F(x)[L†

t p(t, x |t ′, x ′)]dx =
∫ +∞

−∞
F(x)

[
∂

∂t
p(t, x |t ′, x ′)

]
dx (7.195)

and hence the transition probability distribution is governed by the forward Kolmogorov
equation

∂

∂t
p(t, x |t ′, x ′) = L†

t p(t, x |t ′, x ′) (7.196)

For the operator (7.186), one can show by integration by parts that

L†
t = − ∂

∂x
a(t, x)+ 1

2

∂2

∂x2
[b(t, x)]2 (7.197)

and thus

∂

∂t
p(t, x |t ′, x ′) =

[
− ∂

∂x
a(t, x)+ 1

2

∂2

∂x2
[b(t, x)]2

]
p(t, x |t ′, x ′) (7.198)

Using the relation

p(t, x) =
∫ +∞

−∞
p(t, x |t ′, x ′)p(t ′, x ′)dx ′ (7.199)

we multiply (7.198) by p(t ′, x ′) and integrate over all x ′ to obtain the Fokker–Planck equation
for p(t, x),

∂p

∂t
= − ∂

∂x
[a(t, x)p(t, x)]+ 1

2

∂2

∂x2
{[b(t, x)]2 p(t, x)} (7.200)

For 1-D Brownian motion with the SDE (7.152),

a(t, x) = Jc(x) = −1

ζ

(
dU

dx

)
[b(t, x)]2 = 2D (7.201)

the Fokker–Planck equation is

∂p

∂t
= − ∂

∂x
[Jc(x)p(t, x)]+ ∂2

∂x2
{Dp(t, x)} (7.202)

This looks somewhat like a convection/diffusion equation, where the first term is the con-
vective flux due to the presence of the external potential and the second term is the diffusion
caused by the random Brownian motion. If we have a system of N noninteracting particles,
each governed by an independent SDE (7.152), the concentration field of the particles is
c(t, x) = N p(t, x) and is governed by

∂c

∂t
= − ∂

∂x
[Jc(x)c(t, x)]+ ∂2

∂x2
{Dc(t, x)} (7.203)

Thus, we see that there is a strong relationship between macroscopic diffusion and micro-
scopic Brownian motion.

Brownian dynamics and SDEs 351

Some care must be taken if the diffusivity is itself a function of position, as the correct
microscopic balance for the concentration field is

∂c

∂t
= − ∂

∂x
[Jcc]+ ∂

∂x

[
D(x)

∂c

∂x

]
(7.204)

Applying the chain rule,

∂

∂x

∂

∂x
[Dc] = ∂

∂x

[
D

∂c

∂x

]
+ ∂

∂x

[
c

d D

dx

]
(7.205)

we rewrite (7.204) as the correct form of the Fokker–Planck equation for a position-
dependent diffusivity D(x):

∂c

∂t
= − ∂

∂x

[(
Jc + d D

dx

)
c

]
+ ∂2

∂x2
[D(x)c(t, x)] (7.206)

The corresponding Langevin equation is

dx =
{

Jc(x)+ d D

dx

}
dt + [2D(x)]1/2dWt (7.207)

The additional deterministic contribution from the position-dependent diffusivity is known
as spurious drift.

The Einstein relation

We are now ready to derive the proper relationship between the drag constant ζ and the
diffusivity D. If the diffusion is constant, the Fokker–Planck equation (7.202) takes the
form

∂p

∂t
= ∂

∂x

[
1

ζ

(
dU

dx

)
p(t, x)+ D

∂p

∂x

]
(7.208)

As t →∞, the system approaches a stable steady state for D > 0 at which

d

dx

[
1

ζ

(
dU

dx

)
p(x)+ D

dp

dx

]
= 0 (7.209)

Integrating yields
1

ζ

(
dU

dx

)
p(x)+ D

dp

dx
= constant = 0 (7.210)

In the latter equality we use the fact that since the probability field is conserved (there is no
source term), the net flux (convective and diffusive) is zero everywhere at the steady state.
We want this condition to be satisfied by the equilibrium Boltzmann distribution (7.180).
Taking the derivative of peq(x) yields

dpeq

dx
= d

dx

{
Z−1 exp

[
−U (x)

kbT

]}
= Z−1

[
− 1

kbT

dU

dx

]
exp

[
−U (x)

kbT

]
= − 1

kbT

dU

dx
peq

(7.211)

Substituting this into the no-flux condition (7.210) we obtain

0 = 1

ζ

(
dU

dx

)
peq + D

{
− 1

kbT

dU

dx
peq

}
=

(
dU

dx

)(
1

ζ
− D

kbT

)
peq (7.212)

352 7 Probability theory and stochastic simulation

This yields the famous Einstein relation

D = kbT

ζ
(7.213)

Combining this expression with Stokes’ law for the drag constant yields the Stokes–Einstein
relation, predicting the diffusivity of a sphere through a Newtonian fluid,

D = kbT

6πµR
(7.214)

The Einstein relation is a special case of a more general result known as the fluctuation-
dissipation theorem (FDT). The FDT relates the strength of the random thermal fluctuations
(here D) to the corresponding susceptibility to external perturbations (here ζ−1) in such a
way that ensures that the probability distribution converges to the proper equilibrium result
at steady state.

Using the Einstein relation, the random Brownian force on the particle has the statistical
properties

〈FR(t)〉 = 0 〈FR(t)FR(0)〉 = [2ζkbT]δ(t) (7.215)

General formulation of SDEs; Brownian motion in multiple dimensions

Above we have considered only a single SDE, but systems of coupled SDEs can also be
solved. Consider the 3-D isotropic Brownian motion of a paticle, in which each component
of the position vector is governed by a SDE:

dx = −ζ−1 ∂U

∂x
dt + (2D)1/2dW (x)

t

dy = −ζ−1 ∂U

∂y
dt + (2D)1/2dW (y)

t (7.216)

dz = −ζ−1 ∂U

∂z
dt + (2D)1/2dW (z)

t

dW (x)
t , dW (y)

t , and dW (z)
t are increments of independent Wiener processes and the Einstein

relation requires ζ−1 = D/(kbT). Defining the position, conservative force, and Wiener
update vectors,

r =

 x

y
z

 F(c) = −∇U =

−∂U/∂x
−∂U/∂y
−∂U/∂z

 dW t =

dW (x)
t

dW (y)
t

dW (z)
t

 (7.217)

(7.216) is written more compactly as

dr = ζ−1 F(c)dt + (2D)1/2dW t (7.218)

For diffusion in three dimensions, in the absence of an external potential, we have

dx = (2D)1/2dW (x)
t dy = (2D)1/2dW (y)

t dz = (2D)1/2dW (z)
t (7.219)

The mean-squared displacement in 3-D space is

〈(�r)2〉 = 〈(�x)2 + (�y)2 + (�z)2〉 (7.220)

Markov chains and processes; Monte Carlo methods 353

But, since the random motion in each direction is independent,

〈(�r)2〉 = 〈(�x)2〉 + 〈(�y)2〉 + 〈(�z)2〉 (7.221)

and from the stochastic properties of the Wiener process, we have

〈(�x)2〉 = 2Dt = 〈(�y)2〉 = 〈(�z)2〉 (7.222)

Therefore, in three dimensions,

〈(�r)2〉 = 2Dt + 2Dt + 2Dt = 6Dt (7.223)

Similarly, for diffusion in two dimensions, 〈(�r)2〉 = 4Dt .
In general, we relate the Langevin and Fokker–Planck equations as follows. Let us have

an ensemble whose members propagate according to an SDE

dx = a(t, x)dt + B(t, x) · dW t (7.224)

with a state-dependent drift a(t, x) and a state-dependent tensor B(t, x). Then, defining
from B(t, x) the positive-semidefinite diffusion tensor

D(t, x) = B(t, x) · BT(t, x) (7.225)

the probability distribution of the ensemble follows the Fokker–Planck equation

∂p

∂t
= −∇ · [a(t, x)p(t, x)]+ 1

2∇ ∇ : [D(t, x)p(t, x)] (7.226)

Given D(t, x), a corresponding B(t, x) may be obtained by Cholesky factorization; however,
this choice of B is not unique as BQ, for any orthogonal Q, also satisfies (7.225).

Markov chains and processes; Monte Carlo methods

In our discussion of polymerization and random walks, we have been using the concept
of Markov chains. Many simulation and computational methods are based on the random
generation of states (events) according to a defined probability distribution. Because these
techniques involve random number generation, they are known generally as Monte Carlo
methods, after the famous casino in Monaco.

Markov chains

Let us consider a stochastic system whose state is characterized by a vector q. Using the
laws of conditional probability, we write the probability of observing a particular sequence
of states q [0], q [1], . . . , q [N] as

P
(
q [0], q [1], . . . , q [N]

) = P
(
q [0]

)× P
(
q [1]

∣∣q [0]
)× P

(
q [2]

∣∣q [1], q [0]
)

× · · · × P
(
q [N]

∣∣q [N−1], . . . , q [1], q [0]
)

(7.227)

In a Markov process of order m, each conditional probability of adding a new value q[k]

354 7 Probability theory and stochastic simulation

depends only upon the values of the previous m members of the sequence,

P
(
q [k]

∣∣q [k−1], q [k−2], . . . , q [1], q [0]
) = P

(
q [k]

∣∣q [k−1], q [k−2], . . . , q [k−m]
)

(7.228)

Of particular importance are first-order Markov processes,

P
(
q [0], q [1], . . . , q [N]

) = P
(
q [0]

)× P
(
q [1]

∣∣q [0]
)× P

(
q [2]

∣∣q [1]
)× P

(
q [3]

∣∣q [2]
)

(7.229)
× · · · × P

(
q [N]

∣∣q [N−1]
)

Here, the conditional probabilities take the form of transition probabilities,

P
(
q [k]

∣∣q [k−1]
) ≡ T

(
q [k−1] → q [k]

)
(7.230)

Each sequence q [0], q [1], . . . ,q [N] generated by a Markov process is called a Markov
chain. Markov chain Monte Carlo (MCMC) simulation is the general term given to the
use of computers (with hopefully good random number generators) to generate Markov
chains. Here, we focus on the case where the transition probabilities are defined such that
the members of the Markov chain are distributed according to some specified distribution
P(q).

Monte Carlo simulation in statistical mechanics

Consider a system at constant temperature and volume, with a state vector q and an energy
function U(q), such that at equilibrium, the probability of finding the system in state q is
described by the Boltzmann distribution

P(q) = 1

Z
exp

[
−U (q)

kbT

]
Z =

∑
q

exp

[
−U (q)

kbT

]
(7.231)

As T → 0, the system is confined more closely to its minimum potential energy state,
until at T = 0+, only the minimum energy state has a nonzero probability of being
observed.

In Monte Carlo simulation, we generate a random sequence q [1], q [2], q [3], . . . of states that
are sampled according to the probability distribution P(q). That is, the number of members
of such a sequence within some region of volume dq around q is proportional to P(q)dq.
Let us assume that we have some way of generating a random sequence with the correct
probability distribution, and that at iteration k we are at the state q[k]. We then propose at
random a move to a new state q(new), where the probability of proposing this move is γ (q[k]

→ q(new)). We now either accept or reject this move in such a way as to sample correctly
from P(q).

To do so, we define an acceptance probability α(q[k] → q(new)), and if we generate a
random number u, distributed uniformly on [0, 1], that is less than or equal to this probability,
we accept the move. That is, the new state is generated by the rule

q [k+1] =
{

q (new), if u ≤ α
(
q [k] → q (new)

)
q [k], if u > α

(
q [k] → q (new)

) (7.232)

Note that if we reject the move, we then count the current state again.

Markov chains and processes; Monte Carlo methods 355

The acceptance probability is related to the generating probability distribution P(q) by
the condition of detailed balance,

P
(
q [k]

)
γ
(
q [k] → q (new)

)
α
(
q [k] → q (new)

)
= P

(
q (new)

)
γ
(
q (new) → q [k]

)
α
(
q (new) → q [k]

)
(7.233)

To understand the origin and meaning of this relation, consider the following thought
experiment. Let us say that we were generating not one sequence, but many sequences
independently and in parallel. At each step, the number of sequences in our ensemble at or
near q should be proportional to P(q). Therefore, from one step to the next in simulating
our ensemble of sequences, the number of sequences that move away from any point q
to any other point should be balanced by the number moving to q from all other points.
The condition of detailed balance goes yet further, and states that the number of sequences
making the move q[k] → q(new) must be balanced by the number making the move q(new) →
q[k]. This is represented mathematically as the flux balance (7.233). From this condition,
we obtain the following rule for the ratio of the acceptance probabilities,

α
(
q [k] → q (new)

)
α
(
q (new) → q [k]

) = P
(
q (new)

)
γ
(
q (new) → q [k]

)
P
(
q [k]

)
γ
(
q [k] → q (new)

) (7.234)

We often pick a generating process that is symmetric,

γ
(
q [k] → q (new)

) = γ
(
q (new) → q [k]

)
(7.235)

For example, we can displace each component at random,

q (new)
m ← q [k]

m +�m(um − 0.5) (7.236)

where um is a random variable (independent for each component) that is uniformly dis-
tributed between zero and one. �m is some maximum allowable displacement that may be
tuned dynamically to optimize the fraction of moves that are accepted to the range 0.1–0.5.

With a symmetric process for generating the moves, the ratio of acceptance probabilities
becomes

α
(
q [k] → q (new)

)
α
(
q (new) → q [k]

) = P
(
q (new)

)
P
(
q [k]

) (7.237)

A choice that satisfies this condition is

α
(
q [k] → q (new)

) = min
{
1, P

(
q (new)

)
/P

(
q [k]

)}
(7.238)

which yields the Metropolis Monte Carlo method, based upon iterating the following
procedure:

generate a proposed move q [k]→q (new) at random from γ (q [k]→q (new))
compute P(q (new))/P(q [k])
generate a random variable u, uniformly distributed on [0, 1]
if u ≤ min{1, P(q (new))/P(q [k])}, q [k+1] = q (new); else, q [k+1] = q [k]

To simulate a physical system using this method, we start at some initial state, and perform
some large number of Monte Carlo steps to equilibrate the system. Initially, we may start at

356 7 Probability theory and stochastic simulation

2

2

1

1

−

e = 1

saes = 1

sain re = 1

∆ a = 1

Figure 7.13 Exact and Monte Carlo sampled probability distributions of a particle in a 1-D quadratic
energy well.

some state that is not very likely. After a large number of steps, the system will evolve to a
more likely state at which point we can begin measuring the properties of the system. From
our sequence of generated states, we measure any property A(q) and compute the average,

〈A〉 = 1

Ns

Ns∑
j=1

A
(
q [j]

)
(7.239)

When simulating from the Boltzmann distribution, this should agree with the thermody-
namic equilibrium value of A in the NVT (constant mole number, volume, and temperature)
ensemble as Ns →∞. For more on Monte Carlo simulation, consult Frenkel & Smit (2002).

MC NVT sim1.m simulates a particle trapped in the same quadratic potential energy well
as in the Brownian dynamics example of Figure 7.12. Figure 7.13 shows the probability
distribution measured from the Monte Carlo simulation, compared to the exact result. For
the large number of samples in this run, we see that the sampled distribution agrees quite
well with the Boltzmann distribution.

Example. Monte Carlo simulation of a 2-D Ising lattice

Lattice models often are used to introduce statistical mechanics, because they are simple to
understand and easy to simulate. A 2-D Ising lattice comprises N× N sites in a rectangular
array, in which each state has a spin variable that takes on a value of +1 if the spin is “up”
and−1 if the spin is “down.” A state ν of the system assigns to each of the N 2 sites a spin

S[ν]
i j =

{
1, if spin is up
−1, if spin is down

(7.240)

Markov chains and processes; Monte Carlo methods 357

If two sites (i, j) and (m, n) are neighbors (to the “north,” “south,” “east,” or “west”), they
interact with a coupling strength J to favor parallel alignment (either both up or both down),
with an energy contribution

Ei j,mn = −J S[ν]
i j S[ν]

mn =
{−J, if spins are parallel

J, if spins are anti-parallel
(7.241)

In addition, each site interacts with an external magnetic field H according to the state of
its spin, which has a magnetic moment µ. The total energy of the lattice in state ν is then

E [ν] = Hµ

N∑
i=1

N∑
j=1

S[ν]
i j −

J

2

N∑
i=1

N∑
j=1

S[ν]
i j

[
S[ν]

i−1, j + S[ν]
i+1, j + S[ν]

i, j−1 + S[ν]
i, j+1

]
(7.242)

We divide by 2 in the second sum in the energy expression to avoid overcounting each
interacting pair. To mimic the behavior of an infinite lattice, we use periodic boundary
conditions, in which for neighboring points outside the N × N simulation cell we assume

S[ν]
−1, j = S[ν]

N , j S[ν]
N+1, j = S[ν]

1, j S[ν]
i,−1 = S[ν]

i,N S[ν]
i,N+1 = S[ν]

i,1 (7.243)

For each state ν, we define the net magnetization and the order parameter

m[ν] = µ

N∑
i=1

N∑
j=1

S[ν]
i j σ [ν] = 1

N 2

N∑
i=1

N∑
j=1

S[ν]
i j (7.244)

If all spins are “down,” σ [ν] = −1, and if all spins are “up”, σ [ν] = 1. If σ [ν] = 0 there is
no net order of spins in the lattice. Ising lattice MC.m simulates a 2-D Ising lattice and is
called by the following code:

MCOpts.N = 50; MCOpts.mu = 1; MCOpts.H = 0;
MCOpts.J = 1; MCOpts.kb T = 5;
MCOpts.Nequil = 50*(MCOpts.N ˆ2); MCOpts.Nsamples = 50000;
MCOpts.freq sample = MCOpts.N; MCOpts.make plots = 1;
Ising lattice MC(MCOpts);

make Ising lattice MC movie.m uses the results of Ising lattice MC.m to make a movie
showing the spin fluctuations.

An infinite 2-D Ising lattice has a critical point at the Curie temperature Tc, kbTc≈ 2.269 J,
above which there is no net order in the absence of an external field, and below which the
system has a net surplus of either “up” or “down” spins. A strong external field can induce
spin order even above Tc, but higher fields are required at higher temperatures. Figure 7.14
shows two sample states from Monte Carlo simulations. Figure 7.14(a) shows the positions
of spin-up sites in a disordered state for the base case simulated by the code above, while
Figure 7.14(b) shows that imposing an external field H < 0 results in mostly spin-up sites.
For further discussion of Ising lattices, see Chandler (1987).

358 7 Probability theory and stochastic simulation

1

1

2

2

1 1 2 2

attice site n er

at
tic

e
si

te
 n

er
a

1

1

2

2

1 1 2 2

attice site n er

at
tic

e
si

te
 n

er
Figure 7.14 Sample states from Monte Carlo simulation of a 2-D Ising lattice at a temperature above
the Curie point, with points showing spin-up sites: (a) in the absence of an external field, the lattice
has a mixture of spin-up and spin-down sites; (b) with H < 0, lattice sites are mostly spin-up with a
few spin-down sites due to thermal fluctuations (N = 50, µ = 1, H = 0, J = 1, KbT = 5.)

Field theory and stochastic PDEs

Above, we have considered only ordinary SDEs, but many models in statistical physics are
of the form of stochastic PDEs. Let us consider a system such as the Ising lattice that at high
temperatures is disordered, but in which as the temperature is lowered, some form of order
emerges below a critical temperature Tc. We define an order parameter ϕ such that ϕ = 0
denotes a completely disordered state. We have defined such a spin order parameter for the
lattice model (7.244); however, the concept is quite general. For example, when modeling
the phase separation of two species A and B, we could take ϕ to be the difference in the
local densities of each species, ϕ = ρA − ρB.

Commonly, near Tc, the system experiences significant long-range fluctuations in ϕ (you
can observe this with the Ising MC program). Modeling the system on length scales large
compared to the lattice size, we define a local order parameter field ϕ(x) that characterizes
the local degree of order at x. As ϕ is presumed to be small near Tc (the order is just beginning
to emerge), we approximate the local free energy density f (x) as a Taylor series in ϕ(x),
and write the total free energy Hamiltonian of the system as the Landau phenomological
free energy model:

H [ϕ(x)] =
∫ {

−w(x)ϕ(x)+ 1

2
r [ϕ(x)]2 + u[ϕ(x)]4 + 1

2
c|∇ϕ|2

}
dx (7.245)

For an Ising lattice,

r = kb

ad
(T − T ∗) T ∗ = J2d

kb
u = kbT

12ad
w = Hµ

ad
c = Ja2−d (7.246)

where a is the lattice spacing and d is the dimension of the lattice. If we neglect any

Markov chains and processes; Monte Carlo methods 359

fluctuations in the order parameter, a mean-field approximation, we identify the thermody-
namic prediction of the uniform order parameter 〈ϕ〉 as that minimizing the mean-field free
energy

fMF(〈ϕ〉) = −w〈ϕ〉 + 1
2r〈ϕ〉2 + u〈ϕ〉4 (7.247)

Taking ∂ fMF/∂〈ϕ〉 = 0, we have −w + 2r〈ϕ〉MF + 4u〈ϕ〉3MF = 0. In the absence of an
external field, w = 0, this becomes

2〈ϕ〉MF
[
r + 2u〈ϕ〉2MF

] = 0 ⇒ 〈ϕ〉MF =

0, r > 0, T > T ∗

±
√−r

2u
,r < 0, T < T ∗ (7.248)

Thus T* is the predicted transition temperature from mean-field theory. This mean-field
picture of the phase transition is only valid when c is so large that spatial modulations in
the local order parameter field are suppressed; however, we see from (7.246) that this is
unlikely, especially when the dimension d is small.

One way to sample the fluctuations in the order parameter, and thus model their effect
upon the phase transition, is to propose a stochastic model for the order parameter field
such as the time dependent Ginzburg–Landau model A (TDGL-A) dynamics:

∂ϕ

∂t
= −�

δH

δϕ
+ η(t, x) (7.249)

where � > 0. The functional derivative of H [ϕ(x)] is

δH

δϕ

∣∣∣∣
x′
= lim

ε→0

H [ϕ(x)+ εδ(x − x′)]− H [ϕ(x)]

ε
= [−w + rϕ + 4uϕ3 − c∇2ϕ]|x′

(7.250)
and η(t, x) is a random noise field. Here, we have taken the “naive” approach of dividing
the field differential by dt, as this is common in the physics community, even though the
time derivative is not well defined. Equation (7.249) is a stochastic PDE, and to discretize
it, we place a uniform grid of points xm, where m is a unique label. If ϕm is the field value
at m, we discretize (7.249) as the set of ordinary SDEs

dϕm = −�

[
δH

δϕ

∣∣∣∣
xm

]
dt + ηmdt

(7.251)
δH

δϕ

∣∣∣∣
xm

= −w(xm)+ rϕm + 4uϕ3
m − c∇2ϕ

∣∣
xm

We use finite differences to relate ∇2ϕ|xm to an algebraic difference of field values at
neighboring grid points. Let us compare (7.251) to the set of SDEs for Brownian motion in
multiple dimensions,

dxm = −1

ζ

∂U

∂xm
dt + 1

ζ
FR,m(t)dt (7.252)

where the random force vector has the statistical properties

〈FR,m(t)〉 = 0 〈FR,m(t)FR,n(t ′)〉 = 2kbT ζ δ(t − t ′)δmn (7.253)

We see a strong resemblance between (7.251) and (7.252), except that (7.251) has the
functional derivative evaluated at xm rather than the “traditional” derivative of the energy

360 7 Probability theory and stochastic simulation

with respect to the grid value. For a lattice of cells with a volume vc around each point,
if we use quadrature to approximate the functional H[ϕ(x)] as a function H(ϕ) of the grid
values,

δH

δϕ

∣∣∣∣
xm

≈ v−1
c

∂ H

∂ϕm
(7.254)

so that the analogous form to (7.252) is

dϕm = −�v−1
c

[
∂ H

∂ϕm

]
dt + ηmdt (7.255)

Thus, we associate ζ−1 ⇔ �v−1
c and by analogy to (7.253) define the statistical properties

of ηm to be

〈ηm(t)〉 = 0 〈ηm(t)ηn(t ′)〉 = 2kbT �v−1
c δm,nδ(t − t ′) (7.256)

As vc → 0, v−1
c δm, n → δ(xm − xn), so that the statistical properties of the random noise

field η(t, x) in (7.249) are

〈η(t, x)〉 = 0 〈η(t, x)η(t ′, x′)〉 = 2kbT �δ(x − x′)δ(t − t ′) (7.257)

The SDE for the field value at each grid point is then

dϕm = −�

[
δH

δϕ

∣∣∣∣
xm

]
dt + (

2kbT �v−1
c

)1/2
dW (m)

t (7.258)

where the dW (m)
t are independent Wiener processes. TDGL A 2D.m uses this method to

sample the order-parameter field fluctuations at a specified temperature. For more on field
theory applications in statistical physics, consult Chaikin & Lubensky (2000).

Monte Carlo integration

In Chapter 4, we considered a simple method to estimate by Monte Carlo simulation the
value of a definite integral

� =
∫

�

f (x)dx (7.259)

We consider here an alternative method employing importance sampling that may be used
when we can compute the volume V� of � easily. We start by writing (7.259) as the integral
over all space

� =
∫

RN

H�(x) f (x)dx H�(x) =
{

1, if x ∈ �

0, if x /∈ �
(7.260)

Then, we write the integral in terms of the average of f (x) over �, which we determine by
Monte Carlo simulation,

� = V�〈 f 〉� 〈 f 〉� = 1

NS

NS∑
j=1

f
(
x[j]

)
(7.261)

The {x[j]}, uniformly distributed in �, are obtained from Metropolis Monte Carlo sampling

Markov chains and processes; Monte Carlo methods 361

using the sampling distribution

P(x) = H�

(
x
)

V�

(7.262)

Simulated annealing

Consider again the Boltzmann distribution for a system with a state vector x and an energy
function E(x), such that the probability of finding the system at state x is

P(x) ∝ exp

[
− E(x)

kbT

]
(7.263)

As T→ 0, the system is confined more closely to its minimum energy state, until at T = 0+

only the minimum energy state is observed. By analogy to this result, we obtain a method
for finding the global minimum of a cost function known as simulated annealing. Unlike
the methods of Chapter 5, simulated annealing may be used for both continuously-varying
and discretely-varying parameters. We merely replace the energy with the cost function and
set kb to 1:

P(x) ∝ exp

[
− F(x)

T

]
(7.264)

We sample from this distribution using the Metropolis Monte Carlo method, starting initially
at a very high temperature so that the system is able to move efficiently around parameter
space. We then slowly decrease the temperature to zero, to allow the system sufficient time
to escape from higher-lying local minima and find the global minimum (which is easier
said than done).

This method is implemented by simulated annealing.m, called by

[x,F,iflag,x traj] = simulated annealing(func name,x0,OptParam,ModelParam);

func name is the name of a routine that returns the cost function,

function f = fun name(x,ModelParam);

ModelParam is a structure of fixed parameters passed to the cost function routine. x0 is the
initial guess of the state vector. Here, all components of x are assumed to vary continuously,
but the routine can be modified easily to treat discretely-varying parameters. OptParam
is an optional structure that allows the user to modify the behavior of the algorithm. Type
help simulated annealing for further details. The output includes the estimated minimum
x and its cost function value F, an integer iflag for which 1 denotes success, and x traj, a
trajectory of state values sampled during the annealing.

The performance of this simulated annealing routine is examined for the following cost
function, which has two minima, one at x̃(1) = (−3, 3) and a lower one at x̃(2) = (3,−3):

F(x) =
{

10+ 0.1‖x − x̃(1)‖2
2, if ‖x − x̃(1)‖2

2 ≤ ‖x − x̃(2)‖2
2

‖x − x̃(2)‖2
2, otherwise

(7.265)

test simulated annealing.m performs this calculation, and calls global min cost func.m,
that returns the value of the cost function.

362 7 Probability theory and stochastic simulation

2

1

−
−

1

2

−

−

−2

−1

a
in

Figure 7.15 Partial trajectory of a simulated annealing run of a cost function with multiple minima.

Figure 7.15 shows the contour plot of this cost function, overlaid with the trajectory of the
simulation (not all points are shown). The simulation was started at x̃(1), a local minimum
but not the global minimum, at which any of the deterministic optimization methods of
Chapter 5 terminate immediately. Eventually, the stochastic simulation is able to overcome
the barrier to settle finally at the global minimum. We see also that the irregular shape of
the cost function surface near the partition between points closest to x̃(1) and those nearest
to x̃(2) does not pose a significant problem but would for the deterministic algorithms of
Chapter 5. The program sim-anneal-ext.m generates a movie showing the progress of
simulated annealing for a 1-D cost function with multiple local minima.

Genetic programming

We mention here another method, genetic programming, to identify global minima. While
simulated annealing is based on an analogy from physics, genetic algorithms take their
inspiration from biology. The general idea is to let an initial guess of the parameter vector
evolve to improve the cost function in a manner that mimics natural selection. At each
generation of the evolutionary process, there are np members of the population, but only
the “best” ns < np survive to the next generation. In contrast to simulated annealing, at
each iteration, the best population member is at least as good as the initial guess, so this
algorithm is popular for those wishing merely to improve a design and not necessarily to
obtain the optimum. Genetic algorithms are easily adapted to problems with discrete-valued
parameters, although the method is presented here for a continuous parameter vector.

First, we start the calculation with some initial first member x[1]. From this guess, the
generation is filled by creating new members through a combined process of single-member
mutation and dual-member crossing. For each k = 2, 3, . . . , np, we add a new member

Genetic programming 363

x[k] to the population. We define two probabilities: αm, the probability that x[k] will be
created by a mutation, and αc, the probability that it will be created by crossing. These
two probabilities must sum to 1. Here, we only present one type each of mutation and
crossing, but more complicated combinations of random offspring production are used in
practice.

To decide which process to use to add x[k], we generate a random number uk, uniformly
distributed on [0,1]. If uk ≤ αm, we generate x[k] by selecting at random some previous
member of the population x[j], with j < k, and mutating it. A simple mutation is to displace
each component randomly:

x [k]
m ← x [j]

m + σmgm (7.266)

gm is a random number normally distributed with a standard deviation of 1 and σm is the
standard deviation for the displacement of xm. We choose a normally distributed random
variable so that there is a finite probability of selecting even large displacements. If we
have components that take on a discrete number of values, a common mutation is to select
one discrete component randomly and to give it a new value at random from among the
possibilities.

If uk > αm and k > 2, we generate x[k] by a random crossing of two previous members
of the population. We select at random some j < k and l < k to serve as “parents.” One
simple way to perform the crossing is to select at random for each component the value of
one parent or the other:

x [k]
m =

{
x [j]

m , if u′m ≤ 0.5

x [l]
m , if u′m > 0.5

(7.267)

Such a crossing generates a new offspring member that may be in a significantly different
region of phase space than either of the parents. This allows the genetic algorithm to take
large steps in parameter space, thus aiding the search for the global minimum.

Once a generation is filled completely, the selection of members that survive to the next
generation begins. We order the population by increasing values of the cost function F(x),
or equivalently by decreasing order of the fitness, −F(x). The best members are found at
the beginning of this list. We want to select some sub population of ns < np survivors that
will be passed to the next generation; however, it would be a mistake to take merely the first
ns members of the list. As in biology, in-breeding is to be avoided, so before we accept a
new member as a survivor, we ensure that it is not too similar to one previously accepted.
For some positive-definite metric matrix �, we define the squared distance between two
members as

d2
k j ≡

(
x[k] − x[j]

) · �(
x[k] − x[j]

)
(7.268)

When considering a member x[k] for admittance into the set of survivors, we check to see
whether for all previously identified survivors x[j], d2

k j ≥ d2
min. Only if x[k] is sufficiently

different from all of the previous survivors will it be accepted. If we cannot find ns sufficiently
diverse survivors, we move on to the next generation with less than ns, as propagating two
nearly identical members does little good.

364 7 Probability theory and stochastic simulation

1 −

1 −

1 −

1 −2

1 −1

1

1 1

2

es
t

 v
av

e

1
ener atin

Figure 7.16 Cost function of best population member vs. generation number.

In Figure 7.16, we plot the best cost function value among members of the population
vs. the generation number for a sample run of this genetic minimizer.m routine with the
cost function (7.265). Again, we start from the higher minimum at (−3, 3), and simulate
for 100 generations with np = 100, ns = 10, � = 1. After a few iterations, the algorithm
has found its way to the vicinity of the global minimum, but more iterations are required to
reduce the cost function value further.

The supplemental material at the accompanying website contains an additional example
of a genetic algorithm. This example converts the process of solving a Sudoku puzzle into
a discrete optimization that is then solved by a genetic algorithm.

MATLAB summary

The Statistics toolkit contains many useful functions for stochastic simulation. A uniform
random number in [0, 1] is returned by rand; randn returns a random number distributed
by the normal distribution with a mean of zero and a variance of 1 (for more general,
and multivariate, normal distributions, use normrnd). The normal probability distribu-
tion, cumulative distribution, and inverse cumulative probability distribution are returned
by normpdf, normcdf, and norminv respectively. Similar routines are available for other
distributions; for example, the Poisson probability density function is returned by poisspdf.
A GUI tool, dfittool, is available to fit data to a probability distribution. The mean, standard
variation, and variance of a data set are returned by mean, std, and var respectively. For
a more comprehensive listing of the available functions, consult the documentation for the
Statistics toolkit.

Problems 365

Problems

7.A.1. Consider a game involving two six-sided dice. Plot the probability of observing each
total value 2–12 if the dice are fair. How many times, on average, must one roll the dice
before a 7 is observed? How many times, on average, can one roll the dice before a 2, “snake
eyes,” is observed?

7.A.2. Consider again the log normal random walk model of the spot (market) price S(t) of
an asset,

d S = µSdt + σ SdWt (7.269)

Consider a stock with its price sampled each business day (assume 252 business days per
year), with time measured in years. Let the (annual) drift rate be 8%, and let the volatility of
the stock be 20%. Write a program that generates typical characteristic random trajectories
over a year, starting from a price of 100. Make a histogram of the final stock price after one
year.

7.A.3. The central limit theorem of statistics states that the sum of many independent random
variables tends towards a normal distribution without regard to the shape of the underlying
distribution. Consider the statistic X that is a sum of N random variables uj, each uniformly
distributed on [0, 1],

X =
N∑

j=1

u j (7.270)

For large N, compute the distribution of X and fit it to a normal distribution. As N increases,
does P(X) indeed approach a normal distribution? Repeat the calculations for Y defined
as

Y =
N∑

j=1

w j u j (7.271)

where the w j are random weights determined at the beginning of the calculation from a
uniform distribution on [0, 1]. Does P(Y) also approach a normal distribution?

7.A.4. Consider again the 2-D Ising lattice model, for which a Monte Carlo simulation
program has been provided. Using this program, you are asked here to investigate the
nature of the order–disorder transition as a function of the external field H and thermal
energy kbT. Simulate a 100× 100 lattice, with µ = 1, J = 1. In the absence of an external
field, H = 0, the order–disorder transition occurs at the Curie point kbTc ≈ 2.269 J (for an
infinite lattice). Using the provided Monte Carlo program, compute the average magnetic
order parameter as a function of H at various temperatures above and below the Curie point.
Plot the order parameter for a very small field H > 0 as a function of temperature and
describe the qualitative nature of the transition. Then, plot the order parameter vs. H at
several temperatures. How does the transition from positive to negative H change above and
below the Curie point?

366 7 Probability theory and stochastic simulation

7.A.5. A simple model for the geometry of a polymer chain is to treat it as a 3-D random
walk of N steps, each of length l. The chain is described by a set of coordinates r [0], r [1], r [2],
. . . , r [N] where the vector r [k+1] − r [k], between successive coordinates is of length l and is
distributed isotropically in 3-D space. To generate a random vectorv∈�3 that is isotropically
distributed, first generate a vector w with components w j = 2× (rand− 0.5) ∈ [−1,+1],
where rand is uniformly distributed on [0, 1]. Then, if w lies within the unit sphere, rescale
it to 1 and accept the scaled vector as v. Otherwise, if it lies outside of the unit sphere,
generate a new w and try again.

Write a program that generates random conformations of a polymer chain with this model,
and construct the resulting probability distribution of the end-to-end distance |r N − r0|.
Show that this model results in a Gaussian distribution of the end-to-end distance,

P(|r N − r0|) ∝ exp

{
−U (|r N − r0|)

kbT

}
U (|r N − r0|) = K

2
|r N − r0|2 (7.272)

K is an effective spring constant that describes the free energy required to stretch the polymer
chain. Using your program, demonstrate that K is related to N and l by

K = 3kbT

Nl2
(7.273)

7.B.1. For the asset price model of Problem 7.A.2, compute the corresponding Fokker–
Planck equation and solve it for the probability P(S, t) that the asset has a price S at time t
over the year-long simulation period. Use the parameters and the initial condition given in
Problem 7.A.2.

7.B.2. Here, we demonstrate once more how Brownian dynamics relates to diffusive behav-
ior, by simulating spherical particles of radius 1 mm in water at room temperature. At time
t = 0, a particle is released at the origin and undergoes 3-D Brownian motion. Write a
program that repeats this simulation many times and plots the radial concentration profile
of particles as a function of time. It is easier to do the data analysis if you do the simulations
concurrently. Then, solve the corresponding time-dependent diffusion equation in spherical
coordinates and compare the results to that obtained from Brownian dynamics.

7.B.3. Diffusion limited aggregation is a process by which an agglomerate of small particles
grows through the slow addition of particles to its surface through diffusion. Here, you
are asked to simulate this process in two dimensions using a simple model of diffusion
on a lattice, to observe the fractal shape that results from this mode of growth. We first
define several radii R0 < Rend < R1 < R2, and form a 2-D lattice of N × N unit cells with
N ≥ 2R2 + 3. The center of this lattice is identified as the origin, and a matrix with elements
ϕmn for each site (m, n) in the lattice is allocated to store a 0 if the cell is empty and 1 if it is
filled with a small particle. Let rmn be the distance from the cell to the origin. Initially, only
cells within a “seed particle” region with rmn ≤ R0 are filled and the others are empty.

Then, a simulation is begun that consists of a sequence of particle insertions in an empty
cell (m, n) with rmn ≈ R1, followed by random displacements of the particle by one cell to
the top, right, bottom, or left. If at any time, the inserted particle neighbors a filled site, it is
assumed to “stick” to the aggregate, the current site is filled, and a new particle insertion is
performed. If at any time the particle diffuses outside of the escape radius R2, the diffusion

Problems 367

iterations are terminated, as it is assumed to be very unlikely that the particle will find its
way back to stick to the aggregate. No site is then filled, but another particle insertion at R1

is performed. After each insertion, compute the radius of gyration of the aggregate,

R2
g =

�m,nϕmn

√
(m − xc)2 + (n − yc)2

�m,nϕmn

xc = (�m,nϕmnm)/(�m,nϕmn)
yc = (�m,nϕmnn)/(�m,nϕmn)

(7.274)

and stop the simulation when Rg exceeds Rend. Using spy, make a plot of the fractal geometry
of the resulting aggregate for the parameters

R0 = 1 R1 = 30 R2 = 60 Rend = 15 (7.275)

7.B.4. Consider an ideal polymer chain of N freely-jointed segments of length l. We wish to
simulate the evolution of the polymer chain under flow without accounting for any entan-
glements between chains (this is valid as long as the molecular weight is less than ∼1000).
We coarse-grain the geometry of the chain by treating it as a collection of Nb “beads,” each
subsequent pair of beads being connected by a “strand” of Z = N/Nb segments. The set
of SDEs that describe the motion of the chain under flow in a velocity field v(x) is

d Rv =
[
v(0)+ (∇v)T · Rv + 1

ζ
F(c)

v

]
dt +

√
2kbT

ζ
dW (v)

t (7.276)

dW (v)
t is an independent vector of three Wiener processes for each bead. ζ is the drag

constant for each bead, and the total conservative spring force acting on bead ν ∈ [0, N] is

F(c)
v = F(Rv − Rv+1)+ F(Rv − Rv−1) (7.277)

where we use the finitely-extensible (FENE) spring law

F(Q) = −K Q

1− |Q|2/Q2
max

K = 3kbT

Zl2
Qmax = Zl (7.278)

When the chain is stretched only a little, this force law agrees with the Gaussian model
of Problem 7.A.5. As the spring is stretched more, it becomes stiffer so that the chain can
never be extended beyond its contour length.

Write a MATLAB program that simulates and animates the motion of a polymer chain in
a shear velocity field v(x) = γ̇ x2e[1]. For clarity in the animation, shift the center of mass
to the origin after each time step. Perform a number of simulations at varying shear rates
γ̇ > 0 with the parameters

N = 100 l = 1 Nb = 10 kbT = 1 ζ = 1 (7.279)

Describe the nature of the motion and how the shape of the chain is altered.

7.B.5. Another approach to global minimization is the particle swarm optimization (PSO)
method (Kennedy & Eberhart, 1995). Let F(x) be the cost function surface. We simulate a
population of N particles using an algorithm that is meant to mimic the motion of a swarm of
animals in a search for food (www.swarmintelligence.org). Each particle α has a position
x[α] and velocity v[α] that are updated at each iteration. Let p[α] be α’s “personal best,” i.e.
the coordinates with the lowest F(x) that have been visited to date by particle α. Let g be

368 7 Probability theory and stochastic simulation

the position of lowest F(x) found by any particle to date. The update in the velocity and
position of each particle is then

v
[α]
k ← v

[α]
k + c1uk

(
p[α]

k − x [α]
k

)+ c2u′k
(
gk − x [α]

k

)
k ∈ [1, dim(x)]

x[α] ← x[α] + v[α] (7.280)

u, u′ are vectors of independent random numbers, uniformly distributed on [0, 1] and c1,
c2 are tunable learning parameters. A maximum allowable velocity may be specifed as
well. Write a program that uses PSO with approximately 10–50 particles, and compare its
performance to simulated annealing and genetic algorithms for the cost function (7.265).

7.C.1. Atoms of an ideal gas such as argon interact only through dispersion forces that are
modeled by the Lennard–Jones pairwise interaction:

ULJ(Rαβ) = 4ε

[(
σ

Rαβ

)12

−
(

σ

Rαβ

)6
]

rαβ =
∣∣Rα − Rβ

∣∣ (7.281)

This interaction includes a strong short-range repulsion when Rαβ « σ and a weaker long-
range attraction when Rαβ » σ . As ULJ(Rαβ) → 0 as Rαβ →∞, it is common to set the
interaction energy to zero with Rαβ > rcut, where a common choice of cutoff radius is
rcut = 3.5σ .

For a system of N Lennard–Jones atoms, the total potential energy of the system is the
sum of the pairwise interactions from each unique pair of atoms:

Utot(q) =
N∑

α=1

N∑
β=α+1

ULJ(Rαβ) (7.282)

q is the state vector of all atomic positions. Using a cutoff radius, when computing Utot we
need consider only those pairs of atoms with Rαβ ≤ rcut.

If the molecular weight of each atom is ma, we simulate the system at density ρ by
using periodic boundary conditions on a cubic box of dimension L × L × L, such that
ρL3 = ma N . We assume that this simulation cell is surrounded by identical copies, with
images of atom α at

R[m1,m2,m3]
α = Rα + m1Le[1] + m2Le[2] + m3Le[3] m j = 0,±1,±2, . . . (7.283)

If L > rcut, then for each pair (α, β) of atoms in (7.282), we need only consider the images
of each atom that are closest to each other.

At constant N, constant volume V = L3, and constant temperature T, we sample the
system at equilibrium using the Metropolis Monte Carlo method for the Boltzmann distri-
bution P(q) ∝ exp[−Utot(q)/kbT]. The state is updated by selecting at random one or more
atoms, and then randomly translating them. If only one atom is selected, then only a small
fraction of the pairwise interactions in (7.282) change value and need to be recomputed.
In practice, the CPU time necessary to compute the pairwise interactions is reduced by a
strategy such as using a cell list, in which the simulation box is divided into nonoverlapping
subcells of length just greater than rcut. Then, each atom is assigned to one of these subcells,
and when computing the total energy, only atoms in the same or neighboring subcells need
to be considered.

Problems 369

1

2

n

w

Σ

1
1 e−ϕ

Σ n
=1

Figure 7.17 Summation, multiplication, and sigmoidal nodes used in neural networks.

For this problem, you are asked to write a program for Monte Carlo simulation of a
system of Lennard–Jones atoms. For argon, the Lennard–Jones parameters are ε/kb =
119.8 K, σ = 3.405× 10−10 m. From the ideal gas law, compute the density of argon at
standard atmospheric conditions, and then simulate a system of at least 100 atoms at these
conditions. The pressure of the system can be computed from the formula

P = ρkbT + 1

3L3

〈
N∑

α=1

N∑
β=α+1

Fαβ · Rαβ

〉
Fαβ = − ∂U

∂ Rαβ

(7.284)

Since evaluating the pressure requires computing the forces, to save CPU time it is common
to only compute the average in (7.284) over some subset of states from the total trajectory,
each separated by a large number of MC steps. Subsequent states in the Monte Carlo
simulation are nearly identical, and thus it makes little sense, from the standpoint of sampling
phase-space, to compute the pressure at each Monte Carlo step. From the simulation at room
temperature, compute the compressibility factor Z = PV/NkbT , which is 1 for an ideal
gas. Then, reduce the density, keeping the temperature constant at 298 K, and find where Z
starts to diverge from the ideal gas result.

If the temperature were to be reduced and the density increased, this system would
transition from a gas to a liquid and then to a solid. For more on atomistic simulation,
how we extract material properties from such simulations, and how we simulate systems at
constant pressures, constant chemical potentials, etc. consult Frenkel & Smit (2002).

7.C.2. Earlier, we have used statistical arguments to compute the average molecular weight
as a function of conversion for condensation polymerization of multifunctional monomers.
Here, you are asked to model the evolution of the chain length distribution by kinetic Monte
Carlo simulation. Again, consider the case of a bifunctional acid type-1 monomer and a
trifunctional base type-2 monomer, with the numbers N1 and N2 of each monomer chosen
to balance the acid and base end group concentrations. We have estimated the gel point
to occur at an acid conversion of ∼70%. To simulate the evolution of the chain length
distribution up to this point, rather than just compute DPw, we generate a data structure that
can represent the connectivity of the monomers at any time. Let this data structure be State,
with the level-one members
.M1(N1), .M2(N2), .alpha1, .beta2, .molStartA, .molStartB.

State.alpha1 = 2 and State.beta2 = 3 for the case described above. State.M1(k)
contains information about the state of the kth type-1 monomer in the array

370 7 Probability theory and stochastic simulation

Table 7.1 Measured data of system
performance

θ1 θ 2 F(θ)

2.653 2.639 0.948
2.625 2.703 0.744
1.865 2.699 0.381
2.591 3.104 0.393
1.337 2.772 0.648
1.779 2.699 0.411
2.470 2.515 1.162
1.265 3.247 0.784

1

2

w11

w12

w21

w22

w 1

w 2

w

w1

w2

s

s2

s1

t2
w2

w2t2

t1
w1

w1t1

w

w t

t

f
∼

−1

−1

−1

−1

Σ

Σ

Σ

Σ
ω

ω2

ω1

Ω

Figure 7.18 Three-layer neural network for representing a continuous function f (x).

State.M1(k).A(State.alpha1,2). If acid group j of this monomer is unreacted,
State.M1(k).A(j,1) = 0. Else, if it has reacted with base group m of type-2 monomer n,
State.M1(k).A(j,1) = n and State.M1(k).A(j,2) = m. Similar state information is stored for
each type-2 monomer k in State.M2(k).B(State.beta2,2).

State.molStartA (N1) and State.molStartB(N2) are vectors with components that take
the value of 1 if the monomer is a unique “starting position” of a molecule and 0 if it is
not. Using this approach, we can measure the chain length of the molecule attached to each
“start” position by a simple recursive algorithm, and sample each unique molecule only
once.

We start our simulation with all end groups unreacted, so that each monomer is a unique
molecule and all “start” values are 1. Then, we conduct a simulation in which we select a
pair of unreacted acid and base groups at random. We connect these by reaction, and set to

Problems 371

0 the “start” values of the participating monomer units. At each 0.05 increment of the acid
conversion, plot the chain length distribution, up to near the gel point. Unless the number
of monomers that you simulate is very large, the simulation will not be accurate near the
gel point. Plot the measured DPw as a function of conversion, and compare to the previous
analytical result.

7.C.3. Often, we wish to represent some function f of x ∈ �N by an empirical approximation
f̃ (x) ≈ f (x). A common approach (especially in the IT community) is to construct a neural
network from nodes such as those in Figure 7.17. In theory, a three-layer neural network
(Figure 7.18) of such nodes can represent a continuous function, if the number M of nodes
in the middle layer is sufficiently large (Dean et al. 1995).

To compute the value of f̃ (x), we work backwards, to obtain

f̃ (x) =
M∑

j=1

w j t j −� =
M∑

j=1

w jϕ(s j)−� ϕ(x) = 1

1+ e−x
(7.285)

where

s j =
N∑

k=1

w jk xk − ω j (7.286)

The parameters used to fit the network are stored in θ ∈ �P , P = M(N + 2)+ 1,

θ = [w1 · · ·w M w11 · · ·w1N w21 · · ·w2N · · ·w M N ω1 · · ·ωM �]T (7.287)

We obtain θ by minimizing the sum of squared errors between the predictions of the network
and a set of training data,

{
f [p] = f (x[p])

}
, p ∈ [1, Nd],

S(θ) = 1

2

Nd∑
p=1

[
f̃
(
x[p]

)− f [p]
]2

(7.288)

Write a program that uses a stochastic algorithm to fit the neural net. Demonstrate its use
to fit the data of Table 7.1, which are measurements of a cost function representing how
poorly a system performs as a function of two tunable parameters, θ1 and θ2. Using the
fitted model, θ1 and θ2 could be varied automatically to improve the performance through
learning from past experience.

8 Bayesian statistics and
parameter estimation

Throughout this text, we have considered algorithms to perform simulations – given a model
of a system, what is its behavior? We now consider the question of model development.
Typically, to develop a model, we postulate a mathematical form, hopefully guided by
physical insight, and then perform a number of experiments to determine the choice of
parameters that best matches the model behavior to that observed in the set of experiments.
This procedure of model proposition and comparison to experiment generally must be
repeated iteratively until the model is deemed to be sufficiently reliable for the purpose at
hand. The problem of drawing conclusions from data is known as statistical inference, and
in particular, our focus here is upon parameter estimation. We use the powerful Bayesian
framework for statistics, which provides a coherent approach to statistical inference and a
procedure for making optimal decisions in the presence of uncertainty. We build upon the
concepts of the last chapter and find, in particular, Monte Carlo simulation to be a powerful
and general tool for Bayesian statistics.

General problem formulation

The basic parameter estimation, or regression, problem involves fitting the parameters of a
proposed model to agree with the observed behavior of a system (Figure 8.1). We assume
that, in any particular measurement of the system behavior, there is some set of predictor
variables x ∈ �M that fully determines the behavior of the system (in the absence of any
random noise or error). For each experiment, we measure some set of response variables
y(r) ∈�L. If L= 1, we have single-response data and if L > 1, multiresponse data. We write
these predictor and response vectors in row form,

x = [x1 x2 . . . xM] y(r) = [y1 y2 . . . yL] (8.1)

We propose a mathematical relation, which maps the predictors x to the responses y(r), that
involves a set of adjustable model parameters θ ∈ �P , whose values we wish to estimate
from the measured response data. Let us say that we have a set of N experiments, in which
for experiment k = 1, 2, . . . N , x[k] is the row vector of predictor variables and the row
vector of measured response data is y[k]. For each experiment, we have a model prediction
of the response

ŷ[k](θ) = f
(
x[k];θ

)
(8.2)

372

Fitting kinetic parameters of a chemical reaction 373

ied int
predictor
variables
r eac

eerient
k = 1, 2, ..., N

predicted
responses

r eac
eerient

−

easred
resnses
r eac

eerient

var araeters θ t
iniie disareeent
etween easred and

redicted resnses
adstae araeters

ŷ[k](θ)

ŷ[k](θ) = f (x[k]; θ)

y[k]x[k] x ∈ℜM

θ ∈ℜ P

y(r) ∈ℜ L

Model of system
redict

sste resnses
in eac eerient

r x[k] and θ

Figure 8.1 The parameter estimation problem.

The basic regression problem is: given a proposed model f (x[k];θ), how do we choose
θ such that the model predictions ŷ[k](θ) agree most closely to the observations y[k]? Of
course, we need to ask – how do we define “close agreement,” and how close is close enough
to accept the model?

Given the data at hand, which generally include some uncontrolled random errors, how do
we estimate the accuracy with which we have estimated θ? Here, we use Bayesian statistics,
a framework for describing how our uncertainty in the values of the parameters changes
by doing the experiments. Before doing the experiments, we characterize our knowledge
about θ – which we treat as a random vector – by a prior probability density p(θ). If we
have accurate prior knowledge, this distribution is sharply peaked; if not, it is diffuse. After
obtaining new data {y[k]} from the experiments, we use the rules of Bayesian analysis to
compute a posterior density p(θ|{y[k]}) that describes our new uncertainty after taking into
account the additional data. With this posterior, we can test hypotheses, form confidence
(credible) intervals, and make rational decisions based on uncertainty in θ using numerical
simulation.

The Bayesian view is at odds with the traditional frequentist approach to statistics, which
does not treat θ as itself being random. The formation of confidence intervals, selection of
parameter estimation rules, etc. in the sampling approach are not as direct, and sometimes not
as well behaved, as those of Bayesian statistics. A large fraction of the statistics community
has been resistant to the Bayesian paradigm, but this situation is changing and the modern
practice of statistics is increasingly Bayesian. Thus, we take this framework for this chapter,
and provide an overview of its general and powerful tools for parameter estimation.

Example. Fitting kinetic parameters of a chemical reaction

Before proceeding, let us consider some simple examples of parameter estimation problems.
We are studying the kinetics of the chemical reaction A+ B → C, which if assumed
elementary, has the rate law

rR1 = k1(T)cAcB (8.3)

374 8 Bayesian statistics and parameter estimation

cA and cB are the concentrations of the two reactants in M, rR1 is the reaction rate per
unit volume in M/s, and k1(T) is a temperature-dependent rate constant in (Ms)−1. We
determine the value of k1(T) by studying the behavior of well-characterized reactors such as
a perfectly-mixed CSTR or a batch reactor (a well-mixed vessel with no inflow or outflow).

Fitting the rate law to steady-state measurements of a CSTR

For a CSTR, we measure k1(T) by operating the reactor at steady state at constant volume
V, constant volumetric flow rate υ, constant inlet concentrations c(in)

j , and measuring the
outlet concentrations cj. We obtain a measurement of the rate though the balance on C,

dcC

dt
= 0 = υ

[
c(in)

C − cC
]+ V rR1 ⇒ rR1 = υ

V

[
cC − c(in)

C

]
(8.4)

Measurements of cA and cB are necessary to determine k1(T) from (8.3). For each CSTR
experiment, the set of predictor variables is x = [cA cB]. The parameter that we wish to
estimate is θ = [k1]. The response variable is y(r) = [rR1].

In these equations, we have assumed that the reaction is elementary. To relax this assump-
tion, we fit the data to the rate law rR1 = k1cva

A cvb
B , in which case the model parameter vector

is now θ = [k1 va vb]T.
Alternatively, if we wish to study the temperature dependence of the rate constant, we

repeat the experiments at different temperatures. The predictor vector is now x = [cA cB T].
Assuming an Arrenhius form of the rate law, k1(T) = A1 exp[−E1/RT], the vector of
model parameters is θ = [va vb A1 E1]T. In each case above, we have single-response data,
with a nonlinear analytical model relating the predictors to the response.

Fitting the rate law to initial rate measurements in a batch reactor

We can also study the kinetics of the reaction in a batch reactor. We charge the reactor with
known initial concentrations cA(0) and cB(0), and measure the concentrations of the species
as functions of time, governed by the initial value problem:

dcA

dt
= −rR1

dcB

dt
= −rR1

dcC

dt
= rR1 rR1 = k1cνa

A cνb
B

(8.5)
cA(t = 0) = cA(0) cB(t = 0) = cB(0) cC(t = 0) = 0

For each run, we keep the temperature constant at T. From the slope of cC(t) at t = 0, we
obtain the initial reaction rate:

dcC

dt

∣∣∣∣
t=0

= rR1 = k1(T)[cA(0)]νa [cB(0)]νb (8.6)

Let us say that the results of these experiments are those in Table 8.1. Now, the predictor
variables are x = [cA(0) cB(0)] and we have a single response, y = rR1. The set of model
parameters is θ = [k1(T) va vb]T. Again, we have single-response data and an analytical,
nonlinear model relating the predictors to the response.

Fitting kinetic parameters of a chemical reaction 375

Table 8.1 Instantaneous rate data for chemical
reaction A + B → C

Experiment cA (M) cB (M) Rate rR1 (M/s)

1 0.1 0.1 0.0246× 10−3

2 0.2 0.1 0.0483× 10−3

3 0.1 0.2 0.0501× 10−3

4 0.2 0.2 0.1003× 10−3

5 0.05 0.2 0.0239× 10−3

6 0.2 0.05 0.0262× 10−3

Table 8.2 Predictor and response variables in modified linear form

Experiment log10 cA = x1 log10 cB = x2 log10 rR1 = y

1 −1.0000 −1.0000 −4.6096
2 −0.6990 −1.0000 −4.3157
3 −1.0000 −0.6990 −4.2999
4 −0.6990 −0.6990 −3.9988
5 −1.3010 −0.6990 −4.6224
6 −0.6990 −1.3010 −4.5818

Transforming the batch reactor data to obtain a linear
regression problem

As written, the model rR1 = k1(T)cva
A cvb

B is nonlinear; however, if we take the base-10
logarithm,

log10 rR1 = log10 k1(T)+ νa log10 cA + νb log10 cB (8.7)

define new predictor and response variables

y = log10 rR1 x1 = log10 cA x2 = log10 cB (8.8)

and define new model parameters

β0 = log10 k1(T) β1 = νa β2 = νb (8.9)

we obtain a model that depends linearly upon its parameters:

y = β0 + β1x1 + β2x2 (8.10)

The modified predictor and response variables are listed in Table 8.2. From this single-
response linear regression, we obtain estimates for the reaction exponents νa, νb, and the
rate constant k1(T). Such transformations are common in practice, but care must be taken in
drawing the proper statistical conclusions as the transformations also act upon the random
noise that is assumed present.

376 8 Bayesian statistics and parameter estimation

Table 8.3 Batch reaction kinetic data for reaction A + B → C
with initial concentrations of 0.1 M for A and B

time (h) cA (M) cB (M) cC (M)

0.5 0.0985 0.0995 0.0010
1.0 0.0637 0.0651 0.0357
1.5 0.0500 0.0496 0.0501
2.0 0.0462 0.0453 0.0512
3.0 0.0363 0.0384 0.0682
4.0 0.0248 0.0247 0.0747
5.0 0.0171 0.0174 0.0809
6.0 0.0168 0.0203 0.0818
7.0 0.0131 0.0136 0.0858
8.0 0.0150 0.0121 0.0863
9.0 0.0140 0.0142 0.0872

10.0 0.0134 0.0134 0.0928

Fitting the rate law to the entire dynamic profile of a batch reactor run

Above, we have used only the initial slope of cC(t) to measure the reaction rate at the
initial concentrations cA(0) and cB(0). We could fit the rate law to the complete data set
of concentrations vs. time, such as is found in Table 8.3 for the experiment with cA(0) =
0.1 M and cB(0) = 0.1 M. If we use only the data for the concentration of C, we have a
single-response data set. If we include all concentration values, we have a multiresponse
data set with L = 3. For this regression problem, we obtain the model predictions by solving
the IVP (8.5) numerically.

Fitting the rate law from multiple sources

Here, we have provided several data sets that each give information about the rate law,
but each is obtained in different experiments, with perhaps different levels of experimental
errors. When we have such a collection of data from multiple sources, we would like to con-
sider all of it, even if some of the data may be more accurate than others. Below, we see how to
treat such composite data sets, where some data sets may be single-response and others multi-
response.

These example data sets also provide a good overview of parameter estimation problems
of varying complexity. Easiest is a single-response linear regression problem in which, as
for the data of Table 8.2, we have a linear model that relates the predictors to the response.
Next is the case of nonlinear single-response regression, such as for the data of Table 8.1,
where now the response is an explicit nonlinear analytical function of the predictors. If
we fit the rate law to the cC(t) data of Table 8.3, we still have a nonlinear single-response
regression, but now the model predictions must be obtained by numerical simulation of
(8.5). Finally, if we consider as well the cA(t) and cB(t) data of Table 8.3, we have a multi-
response nonlinear regression problem, for which the predictions again must be made by
numerical simulation.

Single-response linear regression 377

Single-response linear regression

We first discuss the regression, or estimation, of parameters in linear models from single-
response data. Let us say that we have performed a set of N experiments in which for each
experiment k = 1, 2, . . . , N , the set of predictor variables {x [k]

1 , x [k]
2 , . . . , x [k]

M } is known a
priori, and a measurement is made of the single-response variable y[k]. We assume that this
single-response variable depends linearly upon the predictors,

y[k] = β0 + β1x [k]
1 + β2x [k]

2 + · · · + βM x [k]
M + ε[k] (8.11)

ε[k] is some random measurement error for the kth experiment. Due to this error, the
measured response is not equal to the “true” response of the system, and the statistical
properties of the error are very important, although generally unknown at the time of
measurement. The “true” parameters {β0, β1, . . . , βM} are those that describe the sys-
tem behavior perfectly in the absence of any random, model, or predictor error. That
is, we hypothesize that the model is indeed a valid one. Thus, the set of predictor vari-
ables chosen indeed completely specifies the response of the system (in the absence
of random error) and the relationship between the response and each predictor is truly
linear.

In some instances, we wish to fit a model with a zero y-intercept β0 = 0, such that

y[k] = β1x [k]
1 + β2x [k]

2 + · · · + βM x [k]
M + ε[k] (8.12)

We introduce a common notation for both cases by defining for each experiment the vectors
of predictors and parameters,

x[k] = [
1 x [k]

1 x [k]
2 . . . x [k]

M

]
θ = [β0 β1 β2 . . . βM]T with y-intercept

(8.13)
x[k] = [

x [k]
1 x [k]

2 . . . x [k]
M

]
θ = [β1 β2 . . . βM]T without y-intercept

Then, the response in the kth experiment is

y[k] = x[k] · θ(true) + ε[k] (8.14)

Because we do not know the “true” values θ(true) of the parameters, we must consider
the parameter vector to be adjustable. The predicted response in the kth experiment, as a
function of θ, is

ŷ[k](θ) = x[k] · θ (8.15)

We further define for our set of experiments the design matrix X to contain for each exper-
iment, the row vector of the predictor values,

X =

— x[1] —
— x[2] —

...
— x[N] —

 (8.16)

For dim(θ) = P, X is an N×P matrix. X is specified when we design the set of experiments

378 8 Bayesian statistics and parameter estimation

and is known prior to collecting the response data.

X =

1 x [1]
1 x [1]

2 . . . x [1]
M

1 x [2]
1 x [2]

2 . . . x [2]
M

...
...

...
...

1 x [N]
1 x [N]

2 . . . x [N]
M

with y-intercept

X =

x [1]
1 x [1]

2 . . . x [1]
M

x [2]
1 x [2]

2 . . . x [2]
M

...
...

...

x [N]
1 x [N]

2 . . . x [N]
M

without y-intercept

(8.17)

The vector of predicted responses in each experiment is then

ŷ(θ) =

ŷ[1](θ)
...

ŷ[N](θ)

 = Xθ (8.18)

Linear least-squares regression

We vary θ until the model predictions ŷ[k](θ) agree most closely with the observed y[k]. We
must define what we mean by “close agreement,” but a readily apparent choice of metric is
that we select the value θLS that minimizes the sum of squared errors

S(θ) ≡
N∑

k=1

[
y[k] − ŷ[k](θ)

]2 = |y − ŷ(θ)|2 (8.19)

That is,

∂S

∂θT

∣∣∣∣
θL S

= 0 ∇2S(θ)|θLS > 0 (8.20)

Substituting ŷ(θ) = Xθ yields

S(θ) = [y − Xθ]T[y − Xθ] = yT y − (Xθ)T y − yT(Xθ)+ (Xθ)T(Xθ) (8.21)

Taking the derivative with respect to θ,

∂S

∂θT
= 0− XT y − XT y + [

XT X + (
XT X

)T]
θ = −2XT y + 2(XT X)θ (8.22)

and setting it equal to zero yields a linear system for θLS,

(XT X)θL S = XT y ⇒ θL S =
[
(XT X)−1 XT

]
y (8.23)

XT X is a P × P matrix; its size is governed by the number of fitted parameters. The (i, j)
element of XT X is

(XT X)i j =
N∑

k=1

Xki Xkj (8.24)

As we increase the number of experiments N, the magnitudes of the elements of XT X
increase. XT X contains information about the ability of the experimental design to probe the

Linear least-squares regression 379

parameter values. XT X is a real, symmetric matrix that is at least positive-semidefinite. For
a well-designed set of experiments that provides sufficient data to estimate each parameter
to at least some finite accuracy, XT X is positive-definite.

Solving the least-squares linear system

Often, XT X may be ill conditioned, i.e., it has one or more eigenvalues near zero, when the
experimental design does not provide sufficient information to measure well one or more
linear combinations of parameters. Therefore, Q R decomposition is the favored solution
method,

XT X = Q R
(8.25)

QT = Q−1 R is upper-triangular

As Q is orthogonal, we write (XT X)θLS = XT y as

Q RθLS = XT y ⇒ RθLS = QT XT y (8.26)

The solution of the latter system requires only backward substitution.
A more expensive approach, but one that provides further insight into experimental

design, is to diagonalize the real, symmetric matrix XT X :

XT X = V �V T (8.27)

V is an orthogonal matrix, V T = V−1, whose columns are the normalized eigenvectors of
XT X and � is a diagonal matrix whose principal diagonal contains the eigenvalues of XT X .
The least-squares estimate θLS is

θLS = [V �−1V T]XT y (8.28)

Note also that since XT XθLS = XT y, we have an overdetermined system,

XθLS = y (8.29)

that can be solved by SVD (Chapter 3). The SVD approach is popular; however, here we
use the familiar eigenvalue decomposition (8.27) in lieu of SVD to analyze experimental
designs.

Example. Least-squares fitting of rate law parameters to transformed
batch data

We now apply the least-squares method to the transformed batch reactor data of Table 8.2
for the kinetics of A+ B → C, using the model

log10 rR1 = log10 k1 + νa log10 cA + νb log10 cB (8.30)

380 8 Bayesian statistics and parameter estimation

The data of Table 8.2 yield the design matrix and response vector

X =

1 −1.0000 −1.0000
1 −0.6990 −1.0000
1 −1.0000 −0.6990
1 −0.6990 −0.6990
1 −1.3010 −0.6990
1 −0.6990 −1.3010

y =

−4.6096
−4.3157
−4.2999
−3.9988
−4.6224
−4.5818

(8.31)

The vector of parameters that we fit is

θ = [log10 k1 νa νb]T (8.32)

We compute XT X , and solve the linear system (8.23) to obtain

θLS =

 log10 k1

νa

νb

 =

−2.6032

1.0224
0.9799

 (8.33)

The estimated rate law for A+ B → C from those data is then

rR1 = k1Cva
A Cvb

B = (0.0025)C1.0224
A C0.9799

B (8.34)

For an elementary reaction, we expect νa = νb = 1, and our fitted values are indeed close
to 1. But, is the discrepancy from νa = νb = 1 due solely to measurement error? To answer
this question we need tools for testing hypotheses.

Example. Comparing protein expression data for two bacterial strains

Let us say that we have performed experiments to measure the protein expression rates of
wild-type and mutant cell strains.

wild-type mutant
121.9
113.4
112.2
106.1

sample
subset mean
= 113.41

120.7
119.5
116.5
124.0

sample
subset mean
= 120.16

(8.35)

Is the difference between strains significant in a statistical sense or just an artifact of mea-
surement noise?

To answer this question, we fit the data to the linear model

y = θ1 + θ2x + ε (8.36)

with the predictor variable

x =
{

0, wild-type
1, mutant

(8.37)

If we estimate probable bounds for the value of θ2,

θ2,lo ≤ θ2 ≤ θ2,hi (8.38)

The Bayesian view of statistical inference 381

and find that θ2, lo > 0, then the data suggest that the difference in means between the two
subsets is statistically significant; i.e., it is probably not due solely to random error.

The least-squares estimates for this model are computed easily. The design matrix X, the
vector of measured responses y, and XT y are

X =

1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

y =

121.9
113.4
112.2
106.1
120.7
119.5
116.5
124.0

XT y =
[

934.3
480.7

]
(8.39)

Thus, for n = 4 data points for each strain,

XT X =
[

(2n) n
n n

]
=

[
8 4
4 4

]
(8.40)(

XT X
)−1 =

[
n−1 −n−1

−n−1 (2n−1)

]
=

[
0.25 −0.25
−0.25 0.5

]

and the least-squares estimate is[
θLS, 1

θLS, 2

]
= (XT X)−1

[
XT y

] = [
0.25 −0.25
0.25 0.5

] [
934.3
480.7

]
=

[
113.4

6.7750

]
(8.41)

θLS, 1 is the sample mean for the wild-type strain, and θLS, 2 is the value of the sample mean
of the mutant strain minus that of the wild-type strain, 120.16− 113.41 = 6.75. But, is it
still within the realm of plausibility that the “true” value of θ2 is zero?

The Bayesian view of statistical inference

In practice, it is insufficient merely to identify the values of the parameters that minimize
the sum of squared errors. We need also to consider the accuracy of our estimates. Here,
we address this topic with Bayesian statistics, which describes how our uncertainty in the
parameter values is changed by doing the experiments. Let us consider single-response
regression of a model

y[k] = f
(
x[k];θ

)+ ε[k] (8.42)

We have a particular set of N measured responses y ∈�N, and wish to estimate the unknown
parameter vector θ ∈ �P and the statistical properties of the random error ε ∈ �. While
the error may not be truly stochastic, we assume that it has the properties of a random
variable, since presumably we have no practical way of predicting the error value in any
single experiment.

As statistics is based upon probability theory, it is helpful to cite again two possible
means of defining probabilities. One way to think about probability – the frequentist

382 8 Bayesian statistics and parameter estimation

approach – is based upon the relative occurrences of events in many repetitive trials. Let
us say that the probability of observing an event E in an independent random trial is p(E).
The frequentist way of defining the value of the probability of observing E, 0 ≤ p(E) ≤ 1,
is to say that if we perform a large number T of such trials, with the observed number of
occurrences of E being NE, then p(E) ≈ NE/T .

We can also define probabilities as statements of belief (de Finetti, 1970). I say that the
probability of observing E during a random trial is p(E) if I have no reason to prefer one of
the following two bets over the other:

event E is observed in a particular trial;
or

a perfectly uniform random number generator in [0, 1] returns a value u that is less than
p(E).

It is then necessary for me, as the holder of this belief system, to ensure that the probability
values that I assign satisfy the appropriate conditions, e.g. are nonnegative, sum or integrate
to 1, follow all laws of conditional and joint probabilities, etc.

Bayesian statistics is based upon manipulation of the probability p(θ| y) that the model
has a parameter vector θ, given a set of measured response data y. While the Bayesian
approach dates to the work of Thomas Bayes in the mid-1700s, it was slow to gain acceptance
because, by treating θ as a random vector, it violates the philosophical principle of Laplacian
determinism, stating that nature is deterministic and predictable. Such criticisms were muted
by the interpretation of probabilities as statements of belief, leading to a resurgence in the
Bayesian approach.

But by resorting to the use of a belief system to define p(θ| y), we introduce the issue of
subjectivity, as it is possible that two different analysts will hold different belief systems,
and thus arrive at different conclusions from the same data. The complaints of the frequen-
tist school about the subjectivity of the Bayesian approach persist to this day, but can be
countered by showing that implementations of the Bayesian paradigm exist such that two
analysts, given the same data and working independently, reach (nearly) the same conclu-
sions. These implementations are not quite objective, but they are highly reproducible from
one analyst to another.

The development of tools to ensure the use of such “objective” belief systems, and
computational methods such as Monte Carlo simulation have brought the Bayesian approach
to the fore in recent years in areas such as parameter estimation, statistical learning, and
statistical decision theory. Here, we focus our attention primarily upon parameter estimation,
first restricting our discussion to single-response data.

Bayes’ theorem

Bayesian analysis is based upon Bayes’ theorem, itself simply an axiom of probability
theory. It is not the theorem that is controversial; it is its application to statistics. Thus, it
is best first to understand the theorem, before considering how it is applied to statistical
inference.

Let us consider two random events E1 and E2 that are not mutually exclusive (i.e. none,
one, or both may occur). Let the probability that E1 occurs be P(E1) and the probability

The Bayesian view of statistical inference 383

that E2 occurs be P(E2). The joint probability that both occur, P(E1 ∩ E2), is related to the
conditional probability that E1 occurs if E2 occurs, P(E1|E2), by

P(E1 ∩ E2) = P(E1|E2)P(E2) (8.43)

Similarly, if P(E2|E1) is the conditional probability that E2 occurs if E1 occurs, we may
write the joint probability as

P(E1 ∩ E2) = P(E2|E1)P(E1) (8.44)

Bayes’ theorem simply states that these two expressions for the joint probability must be
equal,

P(E1 ∩ E2) = P(E1|E2)P(E2) = P(E2|E1)P(E1) (8.45)

and thus

P(E2|E1) = P(E1|E2)P(E2)

P(E1)
(8.46)

So how do we get from this axiom of probability theory to a framework for making inferences
from data?

Bayesian view of single-response regression

Let us consider the single-response regression problem, where the response value in exper-
iment k of a set of N experiments equals the value determined by the “true” model plus
some random error,

y[k] = f
(
x[k];θ(true)

)+ ε[k] (8.47)

ε[k] is a random error whose stochastic properties are unknown. Here, we have used θ(true)

to denote that the random error is added to the model predictions with the “true” values of
the parameters (which are, of course, unknown to us). The predicted response value in each
experiment, as a function of θ, is

ŷ[k](θ) = f
(
x[k];θ

)
(8.48)

If we were to do the same set of experiments again, we would get each time a new vector
of measurement errors

ε = [ε1 ε2 . . . εN]T (8.49)

The general difficulty that we face is we do not really know much about the properties of
the random error, but the accuracy of the model parameter estimates is largely determined
by these errors. Therefore, to obtain a tractable approach to analysis, we make a number of
assumptions about the nature of the error. We will need to check these assumptions later
for consistency with the data, especially if we use our analysis to test hypotheses.

If ε is truly a measurement error and not a deficiency of the model, we expect that if we
do the set of measurements over and over again many times, the expectations (averages) of
each ε[k] will be zero:

E
(
ε[k]

) = 0 (8.50)

384 8 Bayesian statistics and parameter estimation

We also assume that the error value in each experiment is independent of the values in
the other experiments, i.e., they are uncorrelated, so that the covariances among errors
are

cov
(
ε[k], ε[j]

) ≡ E
{[

ε[k] − E
(
ε[k]

)][
ε[j] − E

(
ε[k]

)]} = δkjvar
(
ε[k]

)
(8.51)

That is, the covariance matrix of ε is diagonal:

cov(ε) =

σ 2
1

σ 2
2

. . .

σ 2
N

 σ 2

k = var
(
ε[k]

)
(8.52)

Finally, we assume that all variances are equal,

σ 2
k = σ 2 k = 1, 2, . . . , N (8.53)

Combined, these are known as the Gauss–Markov conditions:

E
(
ε[k]

) = 0 cov
(
ε[k], ε[j]

) = δk jσ
2 (8.54)

We make one additional assumption: that the error is distributed according to a Gaussian
(normal) distribution. This distribution is to be expected when the error in the measured
response is the net result of many independent sources of error being added together.

The probability of observing a particular value of the error in the kth experiment between
ε and ε + dε is then

p
(
ε[k]|σ) = 1

σ
√

2π
exp

[
−
(
ε[k]

)2

2σ 2

]
(8.55)

We now make a subtle, though important, shift in our point of view about the “true” value
of θ. Previously, we have considered the random error to be added to the model prediction
with the “true” parameter vector θ(true) such that ε[k] = y[k] − ŷ[k](θ(true)). But, as we do
not know θ(true), we cannot relate ε[k] to y[k]. Therefore, let us drop all reference to the
“true” value completely, and assume that the relation ε[k] = y[k] − ŷ[k](θ) holds for all trial
values of θ. That is, for any trial θ and σ , we propose that the probability of observing a
response y[k], given θ and σ , is

p
(
y[k]|θ, σ

) = p
(
ε[k] = y[k] − ŷ[k](θ)|σ) = 1

σ
√

2π
exp

{
−
[
y[k] − ŷ[k](θ)

]2

2σ 2

}
(8.56)

As we assume that the errors in each experiment are independent, the joint probability of
observing the complete vector of responses y is

p(y|θ, σ) =
N∏

k=1

p
(
y[k]|θ, σ

)

=
(

1√
2π

)N

σ−N exp

[
− 1

2σ 2

N∑
k=1

[
y[k] − ŷ[k](θ)

]2

]
(8.57)

The Bayesian view of statistical inference 385

We simplify our notation by defining the sum of squared errors as

S(θ) =
N∑

k=1

[
y[k] − ŷ[k](θ)

]2 =
N∑

k=1

[
y[k] − f

(
x[k];θ

)]2
(8.58)

We then write the probability of observing a particular response vector y, given specified
values of θ and σ , which follows from the Gauss–Markov conditions and the assumption
of normally-distributed errors, as

p(y|θ, σ) =
(

1√
2π

)N

σ−N exp

[
− 1

2σ 2
S(θ)

]
(8.59)

Now, in our particular application, we know y, but do not know, and wish to estimate, θ and
σ . Thus, we turn to Bayes’ theorem to invert the order of the arguments, from the p(y|θ, σ)
that we propose in (8.59), to the p(θ, σ |y) that describes our uncertainty in θ and σ , given
the known value of y.

Bayes’ theorem states that

p(y,θ, σ) = p(y|θ, σ)p(θ, σ) = p(θ, σ |y)p(y) (8.60)

and thus

p(θ, σ |y) = p(y|θ, σ)p(θ, σ)

p(y)
(8.61)

We have proposed a functional form and interpretation for p(y|θ, σ).
What do the probability densities p(θ, σ), p(θ, σ |y), and p(y) represent? We say that

p(θ, σ) represents our belief system about the values of θ and σ before we do the experi-
ments, and so is called the prior probability distribution, prior density, or simply the prior.
In our analysis, we must propose some functional form for this probability, and we discuss
the selection of the prior in further detail below. If we start from a state of near-complete
ignorance, the prior should be a very diffuse function, whose density is spread out over a
large region of (θ,σ) space.

Our belief system about the values of θ and σ after we do the experiments is rep-
resented by p(θ, σ |y), and so is called the posterior probability distribution, posterior
density, or the posterior. This is the function that we wish to determine. Ideally, we would
like the posterior to be sharply peaked about a localized region in (θ, σ) space, so that
there is little uncertainty in the values of these parameters and little dependence upon the
prior.

The interpretation of p(y) seems problematic, until we recognize that upon integrating
in θ and σ , p(y) is independent of θ and σ as p(θ, σ |y) must normalize to 1:

∫
dθ

∫
dσ p(θ, σ |y) = 1 =

∫
dθ

∫
dσ p(y|θ, σ)p(θ, σ)

p(y)
(8.62)

p(y) =
∫

dθ

∫
dσ p(y|θ, σ)p(θ, σ)

Thus, Bayes’ theorem simply states that the posterior density is proportional to the product

386 8 Bayesian statistics and parameter estimation

of p(y|θ, σ) and the prior p(θ, σ):

p(θ, σ |y) ∝ p(y|θ, σ)p(θ, σ) (8.63)

Note that p(y|θ, σ) is the probability of observing a particular response y, given specified
values of θ and σ . But, at the time of analysis, it is y that is known and θ and σ that are
unknown. It is common practice to switch the order of the arguments and so define the
likelihood function for θ and σ , given specified y,

l(θ, σ |y) ≡ p(y|θ, σ) =
(

1√
2π

)N

σ−N exp

[
− 1

2σ 2
S(θ)

]
(8.64)

While we switch the order of the arguments, the meaning of this quantity remains
unchanged – it is the probability that the measured response is y, given specified values of
θ and σ .

The posterior density is then written as

p(θ, σ |y) ∝ l(θ, σ |y)p(θ, σ) (8.65)

In the Bayesian approach, we take as estimates θM, σM the values that maximize the pos-
terior density p(θ, σ |y). The frequentist rule is to take the value θMLE that maximizes the
likelihood function l(θ, σ |y). If the prior p(θ, σ) is not uniform in θ, the Bayesian most
probable estimate θM and the maximum likelihood estimate θMLE disagree.

Some general considerations about the selection of a prior

Clearly, the choice of the prior is crucial, as it influences our analysis. It is this subjective
nature of the Bayesian approach that is the cause of controversy, since in statistics we would
like to think that different people who look at the data will come to the same conclusions.
We hope that the data will be sufficiently informative that the likelihood function is sharply
peaked around specific values of θ and σ ; i.e., that the inference problem is data-dominated.
In this case, the estimates are rather insensitive to the choice of prior, as long as it is non-
zero near the peak of the likelihood function. When this is not the case, the prior influences
the results of the analysis.

In some problems, the explicit dependence upon a prior is quite useful. If we know a
priori that certain regions of the parameter space are inadmissible (e.g. certain parameters
must be nonnegative), then the prior can be set to zero in those regions to exclude them
from consideration.

Using an explicit prior also allows us to blend learning from different sets of data in
a seamless manner. Let us say that we measure a response vector y〈1〉 in some set of
experiments, and compute the posterior density

p
(
θ|y〈1〉) ∝ l〈1〉

(
θ|y〈1〉)p(θ) (8.66)

We later perform a new set of experiments on the same system and measure a response
vector y〈2〉. When we perform the analysis on these new data, an apparent choice of prior
for the second set of experiments is the posterior density from the first. The posterior density

The Bayesian view of statistical inference 387

after having conducted both sets of experiments is

p
(
θ|y〈1〉, y〈2〉

) ∝ l〈2〉
(
θ|y〈2〉)p

(
θ|y〈1〉) (8.67)

Bayes’ theorem provides a framework for learning from new experiences.

Finally, in some instances we may wish to use a prior based upon past experience with
similar systems. While such priors violate the ideal of objectivity in statistical analysis, they
can provide better estimates if the subjective prior is chosen well (i.e., the “expert” choosing
the prior knows what he is talking about). Several approaches to constructing priors to agree
with preexisting conditions, data, or experience are discussed in Robert, (2001).

Here, we consider a method for generating priors that is “objective” in the sense that
as long as different analysts agree to use this approach, they will independently come to
(nearly) the same statistical conclusions given only the predictors, response data, model, and
likelihood function. The basic technique, discussed below, is to identify a data-translation,
or symmetry, property that the likelihood function has, and choose the prior so that the
posterior density retains the same property. Such a prior does not give undue emphasis to
any particular region of parameter space and thus is said to be noninformative. As we later
show, for the single-response likelihood (8.64), a noninformative prior is

p(θ, σ) = p(θ)p(σ) p(θ) ∼ c p(σ) ∝ σ−1 (8.68)

As we use a prior that is uniform in θ, the Bayesian most probable estimate θM agrees with
the maximum likelihood estimate θMLE.

The noninformative prior (8.68) is improper as it does not satisfy the normalization
condition ∫

�P

∫
σ>0

p(θ, σ)dσdθ = 1 (8.69)

and furthermore does not integrate to a finite value. For some aspects of our analysis, this
is not a problem as the posterior density is still proper, but when testing hypotheses, it is
important that the prior density also be a proper distribution. We suggest here a very simple
fix to this problem, by providing the a priori upper and lower bounds,

�θ = {θ|θ j,lo ≤ θ j ≤ θ j,hi, j = 1, 2, . . . , N } σlo ≤ σ ≤ σhi (8.70)

with indicator functions Iθ (θ) and Iσ (σ) that equal 1 for parameters that satisfy these bounds
and equal 0 for values outside of the bounds. We then define the proper prior density

p(θ, σ) = c0σ
−1 Iθ (θ)Iσ (σ) c−1

0 =

∫
�P

Iθ (θ)dθ

 ∫

σ>0

σ−1 Iσ (σ)dσ

 (8.71)

We show below why this prior is used, but for the moment, let us accept it as valid and
continue our discussion.

388 8 Bayesian statistics and parameter estimation

The least-squares method reconsidered

Our proposed prior (8.68) makes use of the assumption of prior independence,

p(θ, σ) = p(θ)p(σ) (8.72)

which states that, prior to the experiment, the belief systems about θ and σ are independent.
The posterior density is then

p(θ, σ |y) ∝ l(θ, σ |y)p(θ)p(σ) (8.73)

Assuming the Gauss–Markov conditions hold and that the errors are normally distributed,
the likelihood function is

l(θ, σ |y) =
(

1√
2π

)N

σ−N exp

[
− 1

2σ 2
S(θ)

]
(8.74)

and thus the posterior is

p(θ, σ |y) ∝
(

1√
2π

)N

σ−N exp

[
− 1

2σ 2
S(θ)

]
p(θ)p(σ) (8.75)

If, as we have assumed in (8.68), the prior is uniform in the region of appreciable nonzero
likelihood, p(θ) ∼ c, then the most probable value of θ, for any value of σ , is that which
minimizes S(θ), (8.58). Therefore, the least-squares method is justified statistically, as long
as the Gauss–Markov conditions hold and the errors are normally distributed.

It is shown in the supplemental material in the accompanying website that, in the fre-
quentist view, least squares is an unbiased estimator of the true value (i.e., if we repeat
the set of experiments many times, the average estimate is the true value) if merely the
zero-mean Gauss–Markov condition (8.50) is satisfied.

Numerical treatment of nonlinear least-squares problems

For a linear model y[k] = x[k] · θ + ε[k], we obtain the least-squares estimate by solving an
algebraic system [XTX]θLS = XT y. For a nonlinear model

y[k] = f
(
x[k];θ

)+ ε[k] (8.76)

we must find the least-squares estimate through numerical optimization. For notational
convenience, we define the cost function as

Fcost(θ) = 1

2
S(θ) = 1

2

N∑
k=1

[
y[k] − f

(
x[k];θ

)]2
(8.77)

The gradient γ = ∆F of this cost function has components

γa(θ) = ∂ Fcost

∂θa
= −

N∑
k=1

[
y[k] − f

(
x[k];θ

)] (∂ f

∂θa

∣∣∣∣
x[k];θ

)
(8.78)

We find a local minimum by applying either the nonlinear conjugate gradient method or,
as below, a variation of Newton’s method. For the latter technique, we use the Hessian

Selecting a prior for single-response data 389

H (θ) = ∇2
θ Fcost with the elements

Hab(θ) =
N∑

k=1

(
∂ f

∂θa

∣∣∣∣
x[k];θ

)(
∂ f

∂θb

∣∣∣∣
x[k];θ

)
−

N∑
k=1

[
y[k] − f

(
x[k];θ

)] (∂2 f

∂θa∂θb

∣∣∣∣
x[k];θ

)

(8.79)

We note again that convergence of Newton’s method does not require the use of this
exact Hessian, but convergence to a minimum does require the approximate Hessian to
be positive-definite at each iteration. If we define the linearized design matrix with the
elements

Xka(θ) = ∂ f

∂θa

∣∣∣∣
x[k];θ

(8.80)

that agrees with our previous definition in the special case of a linear model, the Hessian
then has elements

Hab(θ) = (
XT X |θ

)
ab
−

N∑
k=1

[
y[k] − f

(
x[k];θ

)] (∂2 f

∂θa∂θb

∣∣∣∣
x[k];θ

)
(8.81)

If we approximate the Hessian by retaining only the first contribution, we have an approxi-
mation that is always at least positive-semidefinite,

XT X
∣∣
θ
≈ H (θ) (8.82)

The gradient components also are expressed simply in terms of X |θ,

γa(θ) = −
N∑

k=1

[
y[k] − f

(
x[k];θ

)]
(Xka|θ) (8.83)

As in the linear least-squares method, it is possible that (8.82) may have eigenvalues near or
equal to zero that make the Newton update system ill-conditioned. This may be corrected by
adding a small positive scalar along the diagonal. Newton iteration using this modification
is the most common approach to nonlinear least squares, and is known as the Levenberg–
Marquardt method. Starting from an initial guess θ[0], the Newton update at iteration m
is

θ[m+1] = θ[m] + α[m] p[m]
[
XT X |θ[m] + τ [m] I

]
p[m] = −γ(θ[m]

)
(8.84)

α[m] is obtained from a weak line search. For a linear model, this method converges after a
single iteration. When the approximate Hessian is (nearly) singular, the trust-region Newton
method is preferred over the line-search algorithm shown here.

Selecting a prior for single-response data

We now return to the question of proposing a prior, based first upon the assumption of prior
independence, p(θ, σ) = p(θ)p(σ), such that

p(θ, σ |y) ∝ l(θ, σ |y)p(θ)p(σ) (8.85)

390 8 Bayesian statistics and parameter estimation

Using the likelihood function that follows from the Gauss–Markov conditions and the
assumption of normally-distributed errors, we have

p(θ, σ |y) ∝ σ−N exp

[
− 1

2σ 2
S(θ)

]
p(θ)p(σ) (8.86)

How do we propose priors p(θ) and p(σ)?
Let θMLE = θLS be the maximum likelihood estimate of θ, i.e., that maximizing the

likelihood by minimizing S(θ). Let us now write S(θ) as

S(θ) = [S(θ)− S(θLS)]+ S(θLS) (8.87)

so that the posterior becomes

p(θ, σ |y) ∝ σ−N exp

{
− [S(θ)− S(θLS)]

2σ 2

}
exp

{
− S(θLS)

2σ 2

}
p(θ)p(σ) (8.88)

We now define the sample variance s2:

s2 = 1

ν
S(θLS) ν = N − dim(θ) (8.89)

In the supplemental material in the accompanying website, we show that if the Gauss–
Markov conditions (8.54) hold, s2 provides an unbiased estimate for σ 2. That is, if we redo
the set of experiments many times and average the computed s2 in each, E[s2] = σ 2.

Using the definition of the sample variance, the posterior becomes

p(θ, σ |y) ∝ σ−N exp

{
− 1

2σ 2
[S(θ)− S(θLS)]

}
exp

{
− νs2

2σ 2

}
p(θ)p(σ) (8.90)

We now define a likelihood function for σ given s,

l(σ |s) ∝ σ−N exp

{
− νs2

2σ 2

}
(8.91)

and a “conditional likelihood” function for θ given y and σ ,

l(θ|y, σ) ∝ exp

{
− 1

2σ 2
[S(θ)− S(θLS)]

}
(8.92)

The posterior density then partitions into two contributions,

p(θ, σ |y) ∝ [l(θ|y, σ)p(θ)]× [l(σ |s)p(σ)] (8.93)

We now consider each contribution independently to search for priors that seem most
satisfying, in terms of being reproducible by different analysts.

Noninformative prior for θ

We begin first with the “conditional posterior” for θ, treating σ as known,

p(θ|y, σ) ∝ l(θ|y, σ)p(θ) = exp

{
− 1

2σ 2
[S(θ)− S(θLS)]

}
p(θ) (8.94)

Selecting a prior for single-response data 391

Although the posterior density above appears to be of a simple functional form, for a
general nonlinear model, S(θ) by (8.58) may depend in a very complicated manner upon θ.
Therefore, we approximate S(θ) in the local neighborhood of θLS by a quadratic expansion
(for a linear model, this expansion is exact),

S(θ)− S(θLS) ≈ 1
2 (θ − θLS)T[∇2S(θLS)](θ − θLS) (8.95)

∇2S(θLS) is the Hessian of S(θ), evaluated at θLS. Following our numerical treatment of
nonlinear least squares, we define the matrix H(θLS) as

H (θLS) = ∇2
[

1
2 S(θLS)

]
(8.96)

with the elements

Hab(θLS) = (XT X |θLS)ab −
N∑

k=1

[
y[k] − f

(
x[k];θLS

)] (∂2 f

∂θa∂θb

∣∣∣∣
x[k];θLS

)
(8.97)

The linearized design matrix is again given by (8.80). It is consistent with a quadratic
expansion of S(θ) to neglect the second contribution to Hab(θLS), so that

XT X |θLS ≈ H (θLS) (8.98)

Again, for a linear model, this approximation is exact. The quadratic expansion for S(θ),
using 1

2∇2S(θLS) = H (θLS) ≈ XT X |θLS , is then

S(θ)− S(θLS) ≈ (θ − θLS)T[XT X |θLS](θ − θLS) (8.99)

Thus, an approximate “conditional posterior” for θ given y and σ is

π (θ|y, σ) ∝ exp

{
− 1

2σ 2

(
θ − θLS

)T
[XT X |θLS](θ − θLS)

}
p(θ) (8.100)

The approximate “conditional likelihood function”

lapprox(θ|y, σ) ∝ exp

{
− 1

2σ 2

(
θ − θLS

)T[
XT X

∣∣∣
θLS

](
θ − θLS

)}
(8.101)

is of the form of a multivariate normal distribution

p(x|µ, �) ∝ exp

[
−1

2
(x − µ)T�−1(x − µ)

]
(8.102)

with

µ = θLS � = σ 2(XT X |θLS)−1 (8.103)

For a linear model, the design matrix X is completely specified at the time that we choose the
predictor values in each experiment, and thus so is XT X . From one trial set of experiments
to the next, the only quantity that varies significantly is θLS, and this quantity merely sets the
center of the distribution, but does not affect its shape. Therefore, the likelihood function
(8.101) is said to be translated by the data, or data-translated. For a linear model, where
X does not vary, this data-translation property is exact. For a nonlinear model, this data-
translation property is only approximate.

392 8 Bayesian statistics and parameter estimation

µ
−2 −1

µ
σ

1

2

1

1 2

Figure 8.2 Data-translation of conditional likelihood function with a standard deviation of 0.25 and
four data sets with sample means of −1, 0, 1, 2. For each data set, the location of the distribution
changes, but not the shape.

Data-translation becomes clearer if we consider the simple problem

y[k] = θ + ε[k] (8.104)

After N measurements, XT X = N , and the conditional likelihood is

l(θ |y, σ) ∝ exp

{
− N

2σ 2
(θ − ȳ)2

}
ȳ = θLS = 1

N

N∑
k=1

y[k] (8.105)

Thus of all the data in the response vector y, the only value that affects the shape of this
conditional likelihood function is the sample mean ȳ. Data obtained from different sets of
N measurements yield likelihood functions that have the same shape, but are centered at
different locations (Figure 8.2).

The conditional posterior density is

p(θ |y, σ) ∝ exp

{
− N

2σ 2
(θ − ȳ)2

}
p(θ) (8.106)

If we choose the prior to be uniform in the parameter θ that is data-translated, the pos-
terior density will also be data-translated. The concept of data-translation is important to
the generation of priors. Here, the prior is said to be noninformative about θ , because
the data-translation property for θ of the likelihood function is retained by the posterior
density; i.e., the prior does not favor any particular region of θ -space. We posit that by
choosing the prior to be noninformative, we try to be as impartial as possible about the
value of θ without trying to “spin” the data. We identify a translation property that the like-
lihood function possesses, and then choose the prior so that we retain this property in the
posterior.

Selecting a prior for single-response data 393

A noninformative prior provides a reference standard that other researchers can repro-
duce and accept as not reflecting the analyst’s personal bias. It is not quite true to say
that the noninformative prior is objective, as it must be made proper, and this can be
done in many different ways. Also, if likelihood function has more than one symme-
try property available, it is then a subjective choice of which one to use to generate the
noninformative prior. Still, noninformative priors are perhaps “least subjective” or “most
reproducible,” and several results obtained using (8.68) agree with those of frequentist
statistics.

For the single-response model, using a quadratic expansion for S(θ), the likelihood func-
tion (8.101) is data-translated by the least-squares estimate θLS. Thus the noninformative
prior is uniform in this same parameter θ, p(θ) ∼ c, at least in the region of appreciable
nonzero likelihood. Again, a uniform prior in θ is justified on the grounds of being non-
informative. The Bayesian most probable estimate θM therefore agrees with the maximum
likelihood and least squares estimates,

θM = θMLE = θLS (8.107)

Non informative prior for σ

We next consider the problem of estimating the error standard deviation, using the posterior
density for σ ,

p(σ |s) ∝ l(σ |s)p(σ) = σ−N exp

{
− νs2

2σ 2

}
p(σ) (8.108)

We see that the likelihood l(σ |s) is not data-translated in σ . Even though the likelihood
l(σ |s) is not simply translated by the data, there still may exist a one-to-one transformation
η = η(σ) such that l(η|s) is simply translated by the data. That is, the shape of l(η|s) does
not change from one data set to the next, but the location of its maximum does. Once we
find such a transformation, we should choose our prior to be noninformative in η(σ); i.e.,
such that the posterior density in the transformed coordinate, p(η|s), is also data-translated.
This is the case if the prior is locally uniform in η = η(σ), i.e., p(η) ∼ c, in the region of
appreciable nonzero likelihood.

While there exists a technique, due to Jeffreys, for generating noninformative priors
directly from the likelihood function, here we simply propose a transformation η(σ) = ln σ ,
and then show that its likelihood is data-translated. For a discussion of automated procedures
for constructing noninformative priors, consult a general text on Bayesian statistics such as
Box & Tiao (1973).

Writing σ = eη, we have the transformed likelihood

l(η|s) ∝ (eη)−N exp

{
− νs2

2(eη)2

}
= exp

{
−Nη − νs2

2e2η

}
(8.109)

Substituting 1 = s N s−N , we write

l(η|s) ∝ s N s−N exp

{
−Nη − νs2

2e2η

}
= s−N exp

{
N (ln s − η)− νs2

2e2η

}
(8.110)

394 8 Bayesian statistics and parameter estimation

Using s2 = e2lns , we have

l(η|s) ∝ s−N exp
{

N (ln s − η)− ν

2
exp[2(ln s − η)]

}
(8.111)

Adding the proper normalization, we have finally

l(η|s) =
exp

{
N (ln s − η)− ν

2
exp[2(ln s − η)]

}
ηmax∫

ηmin

exp
{

N (ln s − η)− ν

2
exp[2(ln s − η)]

}
dη

(8.112)

Thus, l(η|s) is data-translated. We should choose our noninformative prior to be uniform
in η(σ) = ln σ ,

p(η) ∼ c ⇒ p(σ) ∝
∣∣∣∣ dη

dσ

∣∣∣∣ =
∣∣∣∣ d

dσ
ln σ

∣∣∣∣ = σ−1 (8.113)

where we have used p(σ)dσ = p(η)dη = p(η) |dη/dσ | dσ .

The posterior density for single-response data

Putting together the results of the two previous sections, we use for single-response data the
prior density

p(θ, σ) = p(θ)p(σ) p(θ) ∼ c p(σ) ∝ σ−1 (8.114)

such that the posterior density is

p(θ, σ |y) ∝ σ−(N+1) exp

{
− 1

2σ 2
S(θ)

}
(8.115)

Because S(θ) may depend in a complicated manner upon θ for a nonlinear model, use of
(8.115) often requires numerical computation. We discuss such techniques later, but first
consider analytical calculations based on the approximate posterior density

π (θ, σ |y) ∝ σ−(N+1) exp

{
− 1

2σ 2
(θ − θM)T[XT X |θM](θ − θM)

}
exp

{
− νs2

2σ 2

}
(8.116)

that is obtained from a quadratic expansion of S(θ) about θM = θLS. In general, S(θ) varies
more rapidly than its quadratic approximation, and so the posterior density p(θ, σ |y) decays
to zero as one moves away from θM more rapidly than the approximate posterior π (θ, σ |y).
It has been traditional to use π(θ, σ |y) when generating confidence intervals; however, with
the Markov chain Monte Carlo (MCMC) techniques discussed later, this approximation need
not be made.

We again note that for a linear model the quadratic expansion for S(θ) is exact, and
π (θ, σ |y) = p(θ, σ |y). Thus, the confidence intervals that we compute analytically from
π (θ, σ |y) are exact for a linear model.

Confidence intervals from the approximate posterior density 395

Confidence intervals from the approximate posterior density

The approximate posterior density π (θ, σ |y) for single-response data (8.116), describes
the joint uncertainty in both θ and σ . Of more interest is the marginal posterior density for
θ,

π (θ|y) =
∫ ∞

0
π (θ, σ |y)dσ (8.117)

This is the posterior for θ, without regard to the exact value of σ . As we discard σ by
“integrating it out,” it is called a nuisance parameter.

For the approximate posterior (8.116), the marginal posterior density can be calculated
analytically,

π (θ|y) =
∫ ∞

0
π (θ, σ |y)dσ ∝

[
1+ 1

νs2
(θ − θM)T[XT X |θM](θ − θM)

]−N/2

(8.118)

Note again that for a linear model, this marginal posterior is exact.

Confidence interval for the mean of a population and
the t-distribution

We now form confidence intervals for the model parameters and the predicted responses
using this approximate marginal distribution. First, it is best to consider the simple model
(8.104), y[k] = θ + ε[k]. After N measurements, the posterior density is

p(θ, σ |y) ∝ σ−(N+1) exp

{
− 1

2σ 2
[νs2 + N (θ − ȳ)2]

}
(8.119)

where the sample mean and sample variance are

ȳ = N−1
N∑

k=1

y[k] s2 = 1

ν

N∑
k=1

(
y[k] − ȳ

)2
ν = N − 1 (8.120)

The marginal posterior density for θ is

p(θ |y) =
∫ ∞

0
p(θ, σ |y)dσ ∝

[
1+ N

νs2
(θ − ȳ)2

]−(ν+1)/2

(8.121)

Defining the t-statistic,

t ≡ ȳ − θ

(s/
√

N)
(8.122)

whose distribution satisfies p(t |ν)dt = p(θ |y)dθ , we have

p(t |ν) ∝
[

1+ t2

ν

]−(ν+1)/2

(8.123)

This is the famous t-distribution of Student, a pseudonym for W. S. Gosset (Gosset, 1908).
As the number of degrees of freedom v approaches infinity, the t-distribution reduces to a

396 8 Bayesian statistics and parameter estimation

ν 2

1

2

−

ν

1

2

−

ν 1

1

2

−

ν 2

1

2

−

Figure 8.3 Student t-distribution vs. N (µ = 0, σ 2 = 1) for v = 2, 5, 10, 25. The t-distribution are
the solid lines and the normal distribution are the dashed lines.

Gaussian (normal) distribution of mean zero and variance 1:

lim
ν→∞ p(t |ν) = 1√

2π
e−t2/2 (8.124)

For finite values of ν, the t-distribution is somewhat broader than N (0, 1), to account for
the extra uncertainty in the estimate of θ due to the uncertainty in σ . plot t distribution.m
plots the t-distribution and compares it to the normal distribution for various values of ν

(Figure 8.3).
How do we form a confidence interval for the population mean from the marginal pos-

terior density? Let us say that we know the value of σ so that the conditional posterior
is

p(θ |y, σ) ∝ exp

[
−N (θ − ȳ)2

2σ 2

]
(8.125)

We define next a scaled variable Z = (θ − ȳ)/(σ N−1/2) that is normally distributed with
a mean of 0 and a standard deviation of 1,

p(Z) = 1√
2π

e−Z2/2
∫ +∞

−∞
p(Z)d Z = 1 (8.126)

We then specify Zα/2 > 0 as the value of Z for which∫ Zα/2

−Zα/2

p(Z)d Z = 1− α (8.127)

Confidence intervals from the approximate posterior density 397

There is a 100× (1− α)% chance that

|Z | = |θ − ȳ|
σ N−1/2

≤ Zα/2 (8.128)

so that the 100× (1− α)% confidence interval for the parameter is

θ = ȳ ± Zα/2σ N−1/2 (8.129)

Typically, we form 95% confidence intervals, with α = 0.05, and 99% confidence intervals
with α = 0.01. Using the MATLAB Statistics toolkit, we compute the value of Zα/2 with
the command

Z alpha 2 = norminv(1-alpha/2,0,1);

For α = 0.05, Zα/2 = 1.9600 and for α = 0.01, Zα/2 = 2.5758.
Here, we use the frequentist term confidence interval, as it is standard usage, but more

accurately, in the Bayesian perspective, we should call this a credible interval, meaning that
the parameter has a probability (1− α) of lying in this interval. A frequentist confidence
interval, by contrast, states that if we repeat the same set of experiments many times, we
obtain an estimate of the parameter in this interval (1− α)th of the time. The Bayesian
viewpoint is more direct.

Now, for our problem, we do not know the exact value of σ , so instead of forming
the confidence interval from the unit normal distribution N (0, 1), we form it using the
t-distribution (8.123) which is somewhat broader due to the extra uncertainty in the value
of σ . We define Tν,α/2 as the value for which∫ Tν,α/2

−Tν,α/2

p(t |ν)dt = 1− α (8.130)

There is a 100× (1− α)% chance that the t-statistic is in the range

|t | =
∣∣∣∣ ȳ − θ

(s/
√

N)

∣∣∣∣ ≤ Tν,α/2 (8.131)

The 100× (1− α)% confidence interval on θ is then

θ = ȳ ± Tν,α/2s N−1/2 (8.132)

With the MATLAB Statistics toolkit, we compute Tν,α/2 by the command

T val = tinv(1-alpha/2,nu);

Confidence intervals for model parameters

We now use the t-distribution to form confidence intervals from the approximate posterior
density π(θ, σ |y), (8.116), and its approximate marginal posterior density π (θ|y), (8.118).
Once again, let us assume that we know the exact value of σ . The conditional posterior for
θ is then

π (θ|y, σ) ∝ exp

{
− 1

2σ 2
(θ − θM)T[XT X |θM](θ − θM)

}
(8.133)

398 8 Bayesian statistics and parameter estimation

This is of the form of a multivariate Gaussian distribution (8.102) with a mean θM and a
covariance matrix

� = σ 2[XT X |θM]−1 = cov(θ) (8.134)

We wish to obtain a confidence interval for each parameter θ j . The rule for covariances,
with a constant vector c and a random vector x,

var (c · x) = c · [cov(x)]c (8.135)

yields for c = e[j] the variance of θ j ,

var(θ j) = e[j] · [cov(θ)]e[j] = σ 2e[j] · [XT X
∣∣
θM

]−1
e[j] = σ 2

[
XT X

∣∣
θM

]−1

jj
(8.136)

where [XT X |θM]−1
jj is the jth diagonal element of (XT X)−1. Thus, the 100× (1− α)%

confidence interval on θ j , assuming exact knowledge of σ , is

θ j = θM, j ± Zα/2σ
{[

XT X
∣∣
θM

]−1

j j

}1/2
(8.137)

As the marginal posterior density (8.118) is a multivariate t-distribution, the confidence
interval on the model parameter, accounting for the extra uncertainty in σ , is

θ j = θM, j ± Tν,α/2s
{[

XT X
∣∣
θM

]−1

j j

}1/2
(8.138)

where ν = N − dim(θ).

Confidence intervals on the model predictions

How much does uncertainty in θ affect the model predictions? The predictions with θM

are

ŷ[k](θM) = f (x[k];θM) (8.139)

In keeping with our use of a quadratic approximation for S(θ), we expand the predictions
in the vicinity of θM :

ŷ[k](θ)− ŷ[k](θM) ≈
P∑

a=1

∂ f

∂θa

∣∣∣∣
x[k];θM

(θa − θM,a) (8.140)

Using the definition (8.80) of the linearized design matrix, we have

ŷ[k](θ)− ŷ[k](θM) ≈
P∑

a=1

Xka|θM
(θa − θM,a) = [X |θM (θ − θM)]k (8.141)

Thus, the expansion of the vector of predicted responses is

ŷ(θ)− ŷ(θM) ≈ X |θM
(θ − θM) (8.142)

Treating X |θM as approximately constant (as it is for a linear model), from (8.142) and

Confidence intervals from the approximate posterior density 399

X

X X

X

X
X

X
X

X
X

X

X easred resnse

 redicted resnse

 redictin cnidence interva

1

Figure 8.4 Plot of measured vs. predicted responses (with confidence intervals) to check for model
adequacy with respect to variation in predictor values. Here, the model appears to agree with the
data.

(8.134), the covariance matrix of ŷ(θ) is

cov[ŷ(θ)] = X |θM cov(θ)
(
X |θM

)T = σ 2 X |θM

(
XT X |θM

)−1(
X |θM

)T
(8.143)

The 100× (1− α)% confidence interval for the predicted response in experiment k is then

ŷ[k](θ) = ŷ[k](θM)± sTν,α/2
{[

X |θM
(XT X |θM)−1(X |θM

)T
]

kk

}1/2
(8.144)

It is common to plot, as in Figure 8.4, the model predictions and their confidence intervals
vs. the model estimates to gauge the reliability of the fitted model. Such plots allow one to
identify outliers, i.e., points whose residual errors seem to be larger than the others. For an
outlier, the measured response lies far outside of the confidence interval of the prediction.
Such points may be due to “extra” amounts of error for that particular data point. For
example, the investigator may have transposed the digits of a measurement when recording
them in a laboratory notebook. As points with such “extra” error corrupt the analysis, they
should be removed from the data set. Of course, we should not discard such points based on
our subjective expectation of the outcome, as outliers that are actually valid, but have large
residuals due to model error, have been known to change the course of scientific history. If
possible, redo any experiments that appear to be outliers. If the excessive error appears to
be reproducible, it may be due to model inadequacy.

Least-squares fitting and confidence interval generation in MATLAB

The MATLAB statistics toolkit contains several functions that perform least-squares param-
eter fits and generate confidence intervals for linear and nonlinear models from single-
response data.

400 8 Bayesian statistics and parameter estimation

Linear least-squares calculations in MATLAB

For linear models, we use the function regress,

[theta, theta CI, residuals, res CI, Stats] = regress(y, X, alpha);

y is the vector y ∈ �N of measured responses. X is the N × P design matrix of predictor
variables. alpha sets the width of the confidence intervals (α = 0.05 for 95% CIs). theta
is the vector θM ∈ �P of fitted parameters. theta CI contains lower and upper bounds on
each parameter. residuals contains the values in each experiment of the residual errors
e[k] = y[k] − ŷ[k](θM) and res CI contains lower and upper bounds on these errors. Stats
contains various goodness-of-fit measures.

We demonstrate the use of regress for the data set comparing the protein expression levels
of wild-type and mutant bacterial strains, (8.35). The following MATLAB code performs the
least-squares calculation:

y = [121.9; 113.4; 112.2; 106.1; 120.7; 119.5; 116.5; 124.0];
X = [1 0; 1 0; 1 0; 1 0; 1 1; 1 1; 1 1; 1 1];
alpha = 0.05;
[theta, theta CI, residuals, res CI, Stats] = regress(y, X, alpha);

The results of these calculations are

theta =
113.4000
6.7750

theta CI =
107.1646 119.6354
−2.0432 15.5932

Thus, we have the 95% confidence intervals,

θ1 = 113.40± 6.33 θ2 = 6.78± 8.82 (8.145)

As the confidence interval for θ2 includes θ2 = 0, the difference in protein expression levels
between the two strains is not statistically significant.

Nonlinear least-squares calculations in MATLAB

For nonlinear models, the MATLAB statistics toolkit contains functions to compute the
least-squares estimates and generate confidence intervals using the approximate posterior
density. First, the least-squares estimate is found using the function nlinfit,

[theta, residuals, Jac] = nlinfit(X pred, y, fun, theta 0);

X pred is a matrix that contains in each row the set of predictors for the correspond-
ing experiment. y is the vector of measured response values. fun name is the name of a
function,

Confidence intervals from the approximate posterior density 401

y hat = feval(fun name, theta, X pred);

that returns the vector of predicted responses y hat for input values of the parameters theta
and the predictor values in X pred. theta 0 is an initial guess of the parameter vector.
theta is the least-squares estimate of the parameter vector. residuals contains the residual
errors, and Jac contains the Jacobian of the model functions (i.e. the linearized design
matrix).

For the data of Table 8.1, we fit the model rR1 = k1cνa
A cνb

B using the code

X pred = [0.1 0.1; 0.2 0.1; 0.1 0.2; 0.2 0.2; 0.05 0.2; 0.2 0.05];
y = [0.0246e-3; 0.0483e-3; 0.0501e-3; 0.1003e-3; 0.0239e-3; 0.0262e-3];
theta 0 = [0.01 1.0 1.0]; % initial guess
fun name = ‘calc yhat kinetic ex1’;
[theta, residuals, Jac] = nlinfit(X pred, y, fun name, theta 0);

where we supply the following routine to compute the predicted responses,

function y hat = calc yhat kinetic ex1(theta, X pred);
N = size(X pred,1); % # of experiments
% extract predictors
conc A = X pred(:,1); % [A] in each experiment
conc B = X pred(:,2); % [B] in each experiment
% extract parameters
k 1 = theta(1); % rate constant
nu a = theta(2); % exponent for [A]
nu b = theta(3); % exponent for [B]
% make predictions
y hat = k 1.*(conc A.ˆnu a).*(conc B.ˆnu b);
return;

From the output of nlinfit, 95% confidence interval half-widths are generated (using a
quadratic expansion of S(θ)) for the model parameters and predictions by the commands:

theta CI = nlparci(theta, residuals, Jac);
[y hat, y hat HW] = nlpredci(fun name,X pred,theta, residuals,Jac);

theta CI contains the confidence interval bounds on the parameters, y hat is the vector
of model predictions, and y hat HW contains the confidence interval half-widths of the
predictions. Through additional optional output arguments, nlpredci can also return joint
confidence intervals and half-widths for other values of α than α = 0.05. The results of
these calculations are

theta =
0.0025
1.0001
1.0001

theta CI =

402 8 Bayesian statistics and parameter estimation

0.0019 0.0031
0.9057 1.0946
0.9057 1.0946

Thus, the fitted rate law is

rR1 = (0.0025)c1.0001
A c1.0001

B (8.146)

with the approximate 95% confidence intervals

0.0019 ≤ k1 ≤ 0.0031 0.9057 ≤ νa ≤ 1.0946 0.9057 ≤ νb ≤ 1.0946 (8.147)

Therefore, the data do appear to be consistent with an elementary reaction. Below, we test
this hypothesis more rigorously using MCMC simulation with the exact posterior.

Example. Fitting the rate constant from the full curve of concentration
of C vs. time for a batch reactor experiment

We also can estimate the rate law parameters from the data of Table 8.3. Here, since we
consider single-response regression techniques, we use only the data for cC(t), and assume
an elementary reaction νa = νb = 1. The following code performs the single-response
regression of the cC(t) data,

time hr = [0.5; 1; 1.5; 2; 3; 4; 5; 6; 7; 8; 9; 10];
cC = [0.001; 0.0357; 0.0501; 0.0512; 0.0682; 0.0747; . . .

0.0809; 0.0818; 0.0858; 0.0863; 0.0872; 0.0928];
time s = time hr*3600; % convert hr to sec
X pred = time s; % set predictor matrix
y = cC; % set vector of measured resposnes
k1 0 = 0.0025; % initial guess of k1
% call nlinfit to compute fitted parameter
fun name = ‘calc yhat reaction ex dynamic’;
[k1, residuals, Jac] = nlinfit(X pred, y, fun name, k1 0);
k1 cI = nlparci(k1, residuals, Jac);

We supply a routine that returns the vector of the model predictions by solving the IVP with
the trial value of the rate constant:

function y hat = calc yhat reaction ex dynamic(k1,X pred);
t span = X pred’; % set times at which to report concentrations
x 0 = [0.1; 0.1; 0]; % set initial condition
[t traj,x traj] = ode45(@ batch kinetics dynamics ex, . . .

t span, x 0, [], k1);
y hat = x traj(:,3); % extract predictions from trajectory
return;

and we supply as well a routine that computes the time derivatives of each of the state
variables for the batch kinetic model:

MCMC techniques in Bayesian analysis 403

function x dot = batch kinetics dynamics ex(t,x,k1);
cA = x(1); cB = x(2);
r1 = k1*cA*cB;
x dot = zeros(3,1);
x dot(1) = -r1; x dot(2) = −r1; x dot(3) = r1;
return;

We obtain from these calculations an estimate k1 = 0.0025 and a 95% confidence interval
0.0022 ≤ k1 ≤ 0.0027.

MCMC techniques in Bayesian analysis

The confidence intervals derived above are based upon a quadratic expansion for S(θ) about
θM that is only approximate for a nonlinear model. The exact single-response posterior
without this approximation is

p(θ, σ |y) ∝ σ−(N+1) exp

[
− 1

2σ 2
S(θ)

]
(8.148)

While analytical manipulation of this formula is difficult, MCMC simulation is a powerful
tool to obtain posterior expectations of the form

E[g|y] =
∫
�P

∞∫
0

g(θ, σ)p(θ, σ |y)dσdθ (8.149)

Many statistical questions can be posed in this form. For example, let us say that we wish
to compute the probability that some hypothesis H� is true. Let � be the region in (θ, σ)
space in which the hypothesis H� is true, and outside of �, the hypothesis is false. Let
I�(θ, σ) be the indicator function

I�(θ, σ) =
{

1, if (θ, σ) ∈ �

0, if (θ, σ) /∈ �
(8.150)

For example, if we wish to test the hypothesis that θlo ≤ θ j ≤ θhi, we use the indicator
function

I�(θ, σ) =
{

1, if θlo ≤ θ j ≤ θhi

0, if θ j < θlo or θ j > θhi
(8.151)

The probability that the hypothesis is true then takes the form of a posterior expectation of
the indicator function:

p(H�|y) = E[I�|y] =
∫
�P

∞∫
0

I�(θ, σ)p(θ, σ |y)dσdθ (8.152)

When the dimension of (θ, σ) space is small, it may be possible to compute (8.152) by
quadrature, but MCMC simulation is generally more efficient.

404 8 Bayesian statistics and parameter estimation

Such calculations also arise when we wish to use knowledge gained from analysis of the
data to choose an optimal course of action, and form the basis of statistical decision theory.
We want to consider which of a set {a j } of actions to take, given a loss function L(a j |θ)
that measures how “bad” is choosing action aj, for a particular value of θ. For some values
of θ, a j will be a good action to take (low L(a j |θ)) and for other values of θ, aj will be a
bad action to take (high L(a j |θ)). Given p(θ, σ |y), we select the action that has the lowest
posterior expected loss

L(a j |y) =
∫
�P

∞∫
0

L(a j |θ)p(θ, σ |y)dσdθ = E[L(a j |θ)|y] (8.153)

MCMC computation of posterior predictions

To compute an expectation E[g|y] using MCMC simulation, we rewrite (8.149) to integrate
over all values of σ ∈ � as

E[g|y] =
∫
�P

+∞∫
−∞

Iσ>0(σ)g(θ, σ)p(θ, σ |y)dσdθ (8.154)

where we introduce the indicator function

Iσ>0(σ) =
{

1, σ > 0
0, σ ≤ 0

(8.155)

We then define the sampling density

πs(θ, σ |y) = Iσ>0(σ)p(θ, σ |y) (8.156)

such that

E[g|y] =
∫
�P

+∞∫
−∞

g(θ, σ)πs(θ, σ |y)dσdθ (8.157)

We use MCMC simulation to generate a sequence (θ[m], σ [m]) that is distributed according
to πs(θ, σ |y), such that for a large number Ns of samples, the expectation is approximately

E[g|y] ≈ 1

Ns

Ns∑
m=1

g
(
θ[m], σ [m]

)
(8.158)

The error of this approximation is normally distributed with a standard deviation pro-
portional to

√
Ns if the samples are independent. To generate this sequence, we use the

Metropolis algorithm, known in statistics as Metropolis–Hastings sampling. While other
MC algorithms (e.g. Gibbs sampling) may yield superior performance, here we use only
the Metropolis algorithm, which we have encountered already in Chapter 7. From the cur-
rent state (θ[m], σ [m]), we propose a move (θ[m], σ [m]) → (θ(new), σ (new)) and then decide
whether to accept this new state as the next member (θ[m+1], σ [m+1]) of the sequence. We

MCMC computation of posterior predictions 405

generate a new trial state by displacing at random either θ or σ . For some specified fraction
of θ moves fθ ∈ (0, 1), if a random number u, drawn from a uniform distribution on [0, 1],
is less that or equal to fθ , we propose a random displacement of θ:

θ
(new)
j = θ

[m]
j +�θ M jγ j

(8.159)

{γ j } are drawn at random from N (µ = 0, σ = 1)

where M j = min{〈|θ j |〉,√eps}, 〈|θ j |〉 being the running average of the magnitude of θ j .
Else, we propose a random displacement of σ :

σ (new) = σ [m] +�σγ ′
(8.160)

γ ′ is drawn at random from N (µ = 0, σ = 1)

�θ and �σ are relative step sizes that are adjusted throughout the simulation to meet a target
fraction of moves that are accepted (e.g. 0.3).

The probability of accepting the proposed move is

α([m] → (new)) = min

{
1,

πs
(
θ(new), σ (new)

∣∣y)
πs
(
θ[m], σ [m]

∣∣y)
}

(8.161)

To decide whether to accept the move or not, we generate a random number u′ drawn
from a uniform distribution on [0, 1]. If u′ ≤ α([m] → (new)), we accept the move
and (θ[m+1], σ [m+1]) = (θ(new), σ (new)). Else, we reject the move and reuse the old value
(θ[m+1], σ [m+1]) = (θ[m], σ [m]). It is common to run the MCMC simulation for some num-
ber of steps to “equilibrate” the sequence before beginning the sampling stage to compute
the expectation.

The routine Bayes MCMC pred SR.m implements this method to compute the posterior
prediction of a function g(θ, σ) using single-response data, and is invoked by the command

g pred = Bayes MCMC pred SR(X pred, y, fun yhat, fun g, . . .
theta 0, sigma 0, MCOPTS, Param);

X pred is a matrix that contains in each row the predictor values for the corresponding
experiment. y is the vector of measured responses. fun yhat is a user-supplied function that
returns the vector of predicted responses:

y hat = feval(fun yhat, theta, X pred);

fun g is a user-supplied function that returns the value of g(θ, σ):

g = feval(fun g, theta, sigma, Param);

Param is an optional structure of parameters that can be passed through
Bayes MCMC pred SR to fun g. theta 0 and sigma 0 are the initial values of θ and σ

that initiate the Markov chain.
MCOPTS is a structure that controls the operation of the MCMC simulation and contains

the following fields (and default values):

406 8 Bayesian statistics and parameter estimation

MCOPTS.N equil, the number of equilibration MC iterations to be performed before sam-
pling begins (1 000);

MCOPTS.N samples, the number of samples taken to compute the prediction (10,000);
MCOPTS.frac theta, the fraction of Monte Carlo moves that displace θ; the remainder

displace σ (0.5);
MCOPTS.delta theta, the initial relative size of the random Gaussian displacement in each

θ j during proposed move (0.1);
MCOPTS.delta sigma, the initial size of the random Gaussian displacement of

σ (min{0.1|σ [0]|,√eps});
MCOPTS.accept tar, the target fraction of moves that are accepted (0.3). The sizes of the

proposed MC moves are adjusted dynamically to achieve this target.

Example. Protein expression data for bacterial strains

We consider again the protein expression data (8.35), where we have fitted the linear model

y = θ1 + θ2 x + ε x =
{

0, wild-type
1, mutant

(8.162)

and have obtained the least-squares estimates

θLS,1 = 113.4 θLS,2 = 6.7750 (8.163)

We now compute the probability that θ2 ≥ 5; that is, that the protein expression of the
mutant strain is five units above that of the wild-type strain. We use MCMC simulation to
compute the expectation of the indicator

Iθ2≥5 =
{

1, θ2 ≥ 5
0, θ2 < 5

(8.164)

We perform this calculation with the code

X pred = [1 0; 1 0; 1 0; 1 0; 1 1; 1 1; 1 1; 1 1];
y = [121.9; 113.4; 112.2; 106.1; 120.7; 119.5; 116.5; 124.0];
theta 0 = [113.4; 6.7750]; sigma 0 = 5;
MCOPTS.N equil = 2000; MCOPTS.N samples = 50000;
fun yhat = ‘calc yhat linear model’;
fun g = ‘calc g 1Dinterval’;
Param.j = 2; Param.val lo = 5; Param.val hi = 1e6;
g pred = Bayes MCMC pred SR(X pred, y, fun yhat, fun g, . . .

theta 0, sigma 0, MCOPTS, Param),

where we have supplied the routines,

% calc yhat linear model.m
function y hat = calc yhat linear model(theta,X);
y hat = X*theta;
return;

MCMC computation of posterior predictions 407

and

% calc g 1Dinterval.m
function g = calc g 1Dinterval(theta,sigma,Param);
if((theta(Param.j) >= Param.val lo) & . . .

(theta(Param.j) <= Param.val hi))
g = 1;

else
g = 0;

end
return;

The output from this program is

g pred = 0.7233

Thus, we compute a ∼72.3% chance that the mutant strain has a protein expression level
that is greater than or equal to five units above that of the wild-type strain.

MCMC computation of marginal posterior densities

Monte Carlo simulation can also be used to generate marginal posterior densities using
indicator functions fitted to histograms – a technique known as kernel marginalization. We
estimate the marginal posterior p(θ j |y) by partitioning the θ j interval [θ j,lo, θ j,hi] into Nbins

bins of width � j,bin = (θ j,hi − θ j,lo)/Nbins. We measure the relative number of visits to each
bin through use of the indicator functions

g j,k(θ, σ) =
{

1, [θ j,lo + (k − 1)� j,bin] ≤ θ j < [θ j,lo + k� j,bin]
0, otherwise

(8.165)

The marginal density at the bin mid-point θ j,k = θ j,lo + (k − 1
2)� j,bin is then approxi-

mately

p(θ j,k |y) ≈ E[g j,k |y]

� j,bin
(8.166)

For a discussion of alternative marginalization methods, consult Chen et al. (2000).
calc g 1Dmarginal.m uses the kernel method to construct 1-D marginal densities con-
currently for multiple parameters, and is used by

function [bin 1Dc, bin 1Dp, frac above, frac below] = . . .
Bayes MCMC 1Dmarginal SR(X pred, y, . . .

fun yhat, j plot 1D, val lo, val hi, . . .
N bins, theta 0, sigma 0, MCOPTS);

X pred, y, fun yhat, theta 0, sigma 0, and MCOPTS take the same definitions as in
Bayes MCMC pred SR. j plot 1D contains the numbers of the parameters whose marginal
densities are desired. val lo and val hi are vectors that set the lower and upper limits of
the histogram for each parameter. N bins is the number of bins in each histogram (we use

408 8 Bayesian statistics and parameter estimation

2

1

12

−1 −
θ2

θ 2

1 1 2 2

Figure 8.5 Marginal 1-D posterior density for the difference in protein expression levels between the
two strains (total probability = 0.99848).

the same number for each histogram). bin 1Dc and bin 1Dp contain the histogram rep-
resentations of the marginal densities. bin 1Dc(m,k) contains the value of θ j plot(m),k and
bin 1Dp(m,k) contains the value of p(θ j plot(m),k |y). frac above and frac below give the
fractions of the MC samples that fall outside of the histogram ranges for each parameter.

For the protein expression data, we generate the marginal posterior densities for θ1 in 90
≤ θ1 ≤ 130 and θ2 in −10 ≤ θ2 ≤ 25 by

X pred = [1 0; 1 0; 1 0; 1 0; 1 1; 1 1; 1 1; 1 1];
y = [121.9; 113.4; 112.2; 106.1; 120.7; 119.5; 116.5; 124.0];
theta 0 = [113.4; 6.7750]; sigma 0 = 5;
MCOPTS.N equil = 20000;
MCOPTS.N samples = 1000000;
fun yhat = ‘calc yhat linear model’;
val lo = [90; −10]; val hi = [130; 25];
N bins = 100; j plot 1D = [1; 2];
[bin 1Dc, bin 1Dp, frac above, frac below] = . . .

Bayes MCMC 1Dmarginal SR(X pred, y, . . .
fun yhat, j plot 1D, val lo, val hi, . . .
N bins, theta 0, sigma 0, MCOPTS);

The 1-D marginal distribution of θ2, the difference in expression levels between the two
strains, is shown in Figure 8.5.

A similar approach is used by Bayes MCMC 2Dmarginal SR.m to compute the 2-D
marginal posterior density p(θi , θ j |y). For the protein expression data, p(θ1, θ2|y) is com-
puted by typing the following commands, after executing the code above:

MCMC computation of posterior predictions 409

2

1

1

1

12

1

2

1 1 11 11 12

2

1

1

θ 2

θ1

Figure 8.6 Marginal 2-D posterior density for the protein expression data, computed from MCMC
simulation.

i plot 2D = 1; j plot 2D = 2;
[bin 2Dic, bin 2Djc, bin 2Dp] = . . .

Bayes MCMC 2Dmarginal SR(X pred, y, . . .
fun yhat, i plot 2D, j plot 2D, val lo, val hi, . . .
N bins, theta 0, sigma 0, MCOPTS);

X pred, y, fun yhat, val lo, val hi, N bins, theta 0, sigma 0, and MCOPTS retain the same
definitions as when computing 1-D marginal distributions. i plot 2D and j plot 2D are
the parameters whose 2-D marginal density p(θi plot, θ j plot|y) is desired. bin 2Dic(m) and

bin 2Djc(n) contain the values of θ i plot,m and θ j plot,n respectively. bin 2Dp(m,n) contains
the computed value of p(θ i plot,m, θ j plot,n|y) . The routine generates contour, contourf,
and surf plots of p(θi plot, θ j plot|y). The contourf plot for the protein expression data is
shown in Figure 8.6.

Computing highest probability density (HPD) regions from marginal
posterior distributions

From marginal posterior densities, we can identify the regions of HPD that contain a specified
fraction of the total marginal posterior density. This allows us to compute credible regions
without the need of a quadratic expansion of S(θ). Let p(ψ|y) be a marginal posterior
density, where ψ = ψ(θ, σ) and let Q = dim(ψ) be small enough that p(ψ|y) can be
computed feasibly using the histogram technique. Let �pc be the set of all ψ ∈ �Q , where
p(ψ|y) exceeds some contour value pc:

�pc = {ψ ∈ �Q |p(ψ|y) ≥ pc} (8.167)

410 8 Bayesian statistics and parameter estimation

2

1

1

−

1 1 11 11 12 12

θ 2

θ1

Figure 8.7 The 95% HPD region for (θ1,θ2) for the protein expression data is enclosed within the
boundary curve plotted above.

Such a set is called a Highest Probability Density (HPD) region. We wish to find the HPD
region that contains some fraction (1− α) of the total marginal posterior density; i.e., we
identify the contour value pc,α such that∫

�pc,α

p(ψ|y)dψ = 1− α (8.168)

This approach enables us to compute Bayesian HPD credible regions for any form of the
posterior density, without quadratic approximation of S(θ). Once we have computed the
marginal posterior density on a regular grid, it is fairly straightforward to compute the α

for various pc through quadrature of the grid values. From pc = pc(α), we identify the
particular pc that yields the desired αHPD, and then approximate the HPD region as the
union of bins whose probabilities exceed this pc.

From the results of Bayes MCMC 1Dmarginal.m, HPD regions are identified by the
routine Bayes 1D HPD SR.m,

alpha = 0.05;
[HPD lo, HPD hi] = Bayes 1D HPD SR(bin 1Dc, bin 1Dp, . . .

j plot 1D, alpha);

We compute an approximate 2-D HPD in (θ1, θ2) space using the routine Bayes 2D HPD
SR.m, using as input the results from Bayes MCMC 2Dmarginal.m:

HPD 2D = Bayes 2D HPD SR(bin 2Dic, bin 2Djc, bin 2Dp, . . .
i plot 2D, j plot 2D, alpha);

The 95% HPD for (θ1, θ2) for the protein expression data is shown in Figure 8.7. The 1-D
HPDs are 107.8 ≤ θ1 ≤ 119.0 and −1.78 ≤ θ2 ≤ 14.0, see (8.145).

MCMC computation of posterior predictions 411

Example. Batch reactor chemical reaction data

We next use the MCMC approach to study again the hypothesis that the reaction
A+ B → C is elementary, given the data in Table 8.1. We compute the 95% HPD
for the 2-D marginal posterior density p(θ2, θ3|y). If this HPD region contains the
point (θ2 = 1, θ3 = 1), we cannot support the conclusion that the hypothesis is false
(i.e., the reaction is not elementary). We compute this marginal density using MCMC
simulation by

% input predictor and response data
X pred = [0.1 0.1; 0.2 0.1; 0.1 0.2; 0.2 0.2; 0.05 0.2; 0.2 0.05];
y = [0.0246e-3; 0.0483e-3; 0.0501e-3; 0.1003e-3; 0.0239e-3; 0.0262e-3];
% provide name of routine that returns predicted responses
fun yhat = ‘calc yhat kinetic ex1’;
% provide initial guess of parameters
theta 0 = [0.0025 1.0 1.0];
% compute sample variance with initial guess, and use its
% square root as initial guess for sigma
y hat = feval(fun yhat,theta 0,X pred);
RSS 0 = dot(y-y hat,y-y hat);
sample var 0 = RSS 0/(length(y)-length(theta 0));
sigma 0 = sqrt(sample var 0);
% select the parameters whose 2-D marginal density
% is desired
i plot 2D = 2; j plot 2D = 3;
% set the histogram properties
val lo = [0.8; 0.8]; val hi = [1.2; 1.2]; N bins = 50;
% perform the MCMC simulation to compute the
% 2-D marginal posterior density
MCOPTS.N equil = 50000; % # of equilibration iterations
MCOPTS.N samples = 25000000; % # of samples
[bin 2Dic, bin 2Djc, bin 2Dp] = . . .

Bayes MCMC 2Dmarginal SR(X pred, y, . . .
fun yhat, i plot 2D, j plot 2D, val lo, val hi, . . .
N bins, theta 0, sigma 0, MCOPTS);

% generate from the results the 95% HPD region
alpha = 0.05;
HPD 2D = Bayes 2D HPD SR(bin 2Dic, bin 2Djc, bin 2Dp, . . .

i plot 2D, j plot 2D, alpha);

The computed boundary of the 95% HPD is shown in Figure 8.8. As the HPD contains
(θ2 = 1, θ3 = 1), the data are consistent with an elementary reaction. The code above calls
the same routine to predict the responses, calc yhat kinetic ex1.m, as used previously in
the least squares fitting of the parameters.

412 8 Bayesian statistics and parameter estimation

11

11

1

1

1 1 11 11

θ

θ2

Figure 8.8 Boundary of the 95% HPD for (θ2, θ3) for the 2-D marginal posterior density of the rate
law exponents from the batch reactor data set.

Applying eigenvalue analysis to experimental design

Above, we have generated confidence intervals from the covariance matrix cov(θ) =
σ 2(XT X)−1. While the value of σ 2 may be determined by fluctuations in experimental
conditions that are beyond our control, we can control, through our choice of experimental
design, the design matrix X. We would like to design our experiments so that they provide
enough information to estimate the parameters to sufficient accuracy. We now consider the
application of eigenvalue analysis of XT X to experimental design.

We diagonalize the positive-semidefinite matrix XT X = V �V T , where � =
diag(λ1, λ2, . . . , λP), and P = dim(θ). The matrix V is an orthogonal P×P matrix, V−1 =
V T, whose columns contain the normalized eigenvectors of XT X . The covariance matrix
of θ is

cov(θ) = σ 2[V �V T]−1 = σ 2V T(−1) �−1 V−1 = σ 2 V �−1 V T (8.169)

where �−1 = diag(λ−1
1 , λ−1

2 , . . . , λ−1
P). We see that the small eigenvalues of XT X , with the

corresponding largest diagonal elements in �−1, contribute the most to the uncertainty.

When is an eigenvalue λ j satisfying (XT X)v[j] = λ jv
[j] small? Writing

λ jv
[j] = (XT X)v[j] = XT

— x[1] —
...

— x[N] —

 |
v[j]

|

 = XT

x[1] · v[j]

x[2] · v[j]

...
x[N] · v[j]

 (8.170)

we see that we obtain a small eigenvalue whenever no row in the design matrix has a
significant dot product with the corresponding eigenvector.

Applying eigenvalue analysis to experimental design 413

As an example, consider fitting the model

y = θ1 + θ2 x1 + θ3 x2 + ε (8.171)

to a data set with the design matrix

X =

1 1 1
1 2 2
1 3 3
1 4 4

 XT X =

 4 10 10

10 30 30
10 30 30

 (8.172)

We see that XT X is singular, as a result of the lack of any experiments with x1 �= x2. But,
let us say that this deficiency of the data set was not so immediately obvious. We could still
diagnose the situation using the eigenvector decomposition (8.27),

V =

 0.0000 0.9728 0.2317

0.7071 −0.1639 0.6979
−0.7071 −0.1639 0.6879

 � =

0.0

0.6312
63.3688

 (8.173)

The eigenvector corresponding to the zero eigenvalue is of the form [o + c − c], suggesting
that we need to add an experiment that varies x1 and x2 in opposite directions. Therefore,
we add an experiment whose predictor variables equal those in the second experiment plus
[0 1 −1],

[1 2 2]+ [0 1 −1] = [1 3 1] (8.174)

so that the span of the row vectors in the new design matrix contains the eigenvector for the
zero eigenvalue. For the new design, we have

X =

1 1 1
1 2 2
1 3 3
1 4 4
1 3 1

 XT X =

 5 13 11

13 39 33
11 33 31

(8.175)

� =

0.5868

1.8796
72.5338

The zero eigenvalue has been removed, and we now are able to estimate all parameters to
finite accuracy.

This analysis is useful for designing a set of experiments to yield the desired accuracy.
Given an a priori estimate of σ 2, we estimate the corresponding width of the confidence
intervals. If this accuracy is insufficient, we add more experiments, until the expected
accuracy is deemed sufficient.

For a nonlinear model, we also must provide a ballpark estimate of θ, where we evaluate
the linearized design matrix. We then apply the eigenvalue analysis above, but use the

414 8 Bayesian statistics and parameter estimation

linearized design matrix. In cases where it may be very costly to come back later to perform
additional experiments, we may wish to try multiple estimates of θ, repeat the eigenvalue
analysis for each linearized design matrix, and accept only a design that appears to provide
sufficient accuracy for all plausible values of θ.

Example. Determining the number of additional experiments
necessary for the protein expression data

We consider once again the data for the protein expression levels of wild-type and mutant
bacterial strains (8.35) with XT X and its inverse again given by (8.40). For a specified σ ,
the standard deviation of θ2 is

std(θ2) = σ

√
(XT X)−1

22 = σ
√

2n−1 (8.176)

The expected width of the confidence interval in this parameter is then∣∣θ2 − θM,2

∣∣ ≈ Zα/2σ
√

2n−1 (8.177)

Or, to account roughly for the extra uncertainty in σ , we could use∣∣θ2 − θM,2

∣∣ ≈ Tn−2,α/2 s
√

2n−1 (8.178)

We can use (8.178) with n = 4+ m and the s-value from the existing data to estimate the
number m of additional experiments necessary to reduce the uncertainty in θ2 to a desired
level.

Here, our emphasis has been upon experimental design; however, eigenvalue analysis
and SVD of the design matrix can also be used to extract at least partial results when XT X
is singular. This subject is discussed in further detail in the supplemental material in the
accompanying website.

Bayesian multiresponse regression

Previously, we have considered only the analysis of single-response data. Here, we discuss
multiresponse regression, focusing primarily upon the extension of the least-squares method
to the case of multiple, perhaps correlated, responses in each experiment.

Again, we perform a number N of experiments, where in the kth experiment, we
have a known set of M predictor variables, x[k] ∈ �M , and we observe the L responses
y[k] ∈ �L . We wish to estimate the values of P unknown parameters θ ∈ �P , in a model
whose predicted responses for each experiment form a vector f (x[k];θ) ∈ �L . We assume
that the measured responses are equal to the model predictions plus a random error
vector,

y[k] = f
(
x[k];θ

)+ ε[k] (8.179)

ε[k] ∈ �L is assumed to be independent of the other ε[l �=k], but we allow that the components
of ε[k] may be correlated. The L × L covariance matrix (unknown) of each error vector is

Bayesian multiresponse regression 415

� = cov(ε). From the measured responses, we form the N × L response data matrix

Y =

y[1]

y[2]

...
y[N]

 (8.180)

We assume that the errors in each experiment are drawn independently from a multivariate
normal distribution with zero mean,

p(ε|�) = 1

(2π)L/2|�|1/2
exp

[
−1

2
εT�−1ε

]
(8.181)

Thus, the probability of observing a response y[k] in experiment k is

p
(
y[k]|θ, �

) = (2π)−L/2|�|−1/2 exp

{
−1

2

[
y[k] − f

(
x[k];θ

)]T
�−1

[
y[k] − f

(
x[k];θ

)]}
(8.182)

Assuming independent errors in each experiment, the likelihood function for the multi-
response data is

l(θ, �|Y) = p(Y |θ, �) =
N∏

k=1

p
(
y[k]|θ, �

)
(8.183)

Using the rule eaeb = ea+b, we have

l(θ, �|Y) = (2π)−N L/2|�|−N/2

× exp
{
− 1

2

∑N
k=1

[
y[k] − f

(
x[k];θ

)]T
�−1

[
y[k] − f

(
x[k];θ

)]}
(8.184)

We next define the L × L positive-definite matrix S(θ) with the elements

Sab(θ) =
N∑

k=1

[
y[k]

a − fa
(
x[k];θ

)][
y[k]

b − fb
(
x[k];θ

)]
(8.185)

and write the likelihood function as

l(θ, �|Y) = (2π)−N L/2|�|−N/2 exp
{− 1

2 tr[�−1S(θ)]
}

(8.186)

For this l(θ, �|Y), the noninformative prior is (Box & Tiao, 1973)

p(θ, �) = p(θ)p(�) p(θ) ∼ c p(�) ∝ |�|−(L+1)/2 (8.187)

Therefore, the posterior density p(θ, �|Y) ∝ l(θ, �|Y)p(θ)p(�) is

p(θ, �|Y) ∝ (2π)−N L/2|�|−(N+L+1)/2 exp

{
−1

2
tr[�−1S(θ)]

}
(8.188)

For this posterior density, of the form of a Wishart distribution, the marginal posterior
density for θ can be computed analytically:

p(θ|Y) =
∫

�>0

p(θ, �|Y)d� ∝ |S(θ)|−N/2 (8.189)

416 8 Bayesian statistics and parameter estimation

Reduction of the multiresponse posterior density to the previous
result for single-response data

We now show that this marginal posterior, p(θ|Y) ∝ |S(θ)|−N/2, agrees with our previous
result (8.118) for single-response data, by considering a linear model. For L = 1, ŷ[k](θ) =
(Xθ)k ,

S(θ) =
N∑

k=1

[
y[k] − (Xθ)k

]2 =
N∑

k=1

{[
y[k] − (XθLS)k

]+ [
X
(
θLS − θ

)]
k

}2

=
N∑

k=1

[
y[k] − (XθLS)k

]2 + 2
N∑

k=1

[
y[k] − (XθLS)k

][
X (θLS − θ)

]
k

+
N∑

k=1

[
X (θLS − θ)

]2

k
(8.190)

Writing the sum in the middle term of the right-hand side as

N∑
k=1

(y − X θLS)k

[∑
j

Xk j

(
θLS − θ

)
j

]

=
∑

j

(θLS − θ) j

N∑
k=1

(XT) jk

(
y − XθLS

)
k

=
∑

j

(θLS − θ) j [XT(y − XθLS)] j = (θLS − θ) · [XT(y − XθLS)]

(8.191)

we see that this term is zero, as XTXθLS = XT y. Therefore,

S(θ) =
N∑

k=1

[
y[k] − (

XθLS
)

k

]2 +
N∑

k=1

[
X (θLS − θ)

]2

k
(8.192)

Using our previous definition (8.89) of the sample variance,

νs2 = S(θLS) =
N∑

k=1

[
y[k] − (XθLS)k

]2
(8.193)

and

N∑
k=1

[
X (θLS − θ)

]2

k
= (θ − θLS)T XT X (θ − θLS) (8.194)

we have

S(θ) = νs2 + (θ − θLS)T XT X (θ − θLS) (8.195)

Thus, the marginal posterior for θ, p(θ|Y) ∝ |S(θ)|−N/2, becomes

p(θ|Y) ∝
[

1+ 1

νs2
(θ − θLS)T X T X (θ − θLS)

]−N/2

(8.196)

This is the same multivariate t-distribution as (8.118).

Bayesian multiresponse regression 417

Numerically computing the parameter estimate

From the marginal posterior density p(θ|Y) ∝ |S(θ)|−N/2, we identify the most probable
estimate θM as that minimizing |S(θ)|. We compute |S(θ)| by performing a LU decompo-
sition,

P(θ)S(θ) = L(θ)U (θ) (8.197)

As |S(θ)| > 0 for the positive-definite matrix S(θ), we have

|S(θ)| =
L∏

l=1

|Ull(θ)| (8.198)

Here, we have used the fact that |L| = 1 and |P| = ±1. As f (x) and ln[f (x)] have the
same minima, we find θM by minimizing the cost function

Fcost(θ) = ln|S(θ)| =
L∑

l=1

ln |Ull(θ)| (8.199)

which varies more slowly with θ than does |S(θ)|.
Because the gradient vector of this cost function is difficult to determine, we use the

nonlinear simplex method that only requires us to compute the cost function value for each
trial θ. This technique returns only a local minimum; therefore, we augment it by simulated
annealing to search for a global minimum, as is done by the routine sim anneal MR.m:

[theta, det S, det S 0] = sim anneal MR(. . .
X pred, Y, fun yhat, theta 0, N iter, . . .
freq quench, freq reset, T 0);

X pred is the N × M matrix that contains in each row the predictors for the corresponding
experiment. Y is an N × L matrix containing the responses for each experiment in the
corresponding row. fun yhat is the name of a user-supplied routine that returns the predicted
response data matrix for input values of theta (the parameters) and X pred:

Y hat = feval(fun yhat, theta, X pred);

theta 0 contains the initial guesses of the parameters. N iter is the total number of iterations
during the simulated annealing run. freq quench is a number in [0, 1] that sets the frequency
with which the simulation is “quenched” at random times during the simulation. Here,
“quenching” refers to running the nonlinear simplex minimizer fminsearch to find a local
minimum of the cost function. freq reset specifies the frequency with which the state is
reset, at random times, to the best one (lowest cost function) found to date. T 0 is the initial
annealing temperature. If this argument is not included, a default value of 10|Fcost(θ[0])| is
used.

The routine returns the theta value with the lowest cost function found during the
simulation. det S is the value of |S(θ)| for this optimal parameter value (at least a local
minimum). det S 0 is the value of |S(θ[0])|.

418 8 Bayesian statistics and parameter estimation

Use of this routine requires the MATLAB optimization toolkit, for access to fminsearch,
when freq quench is nonzero. If fminsearch is unavailable, the routine may be modified
to use the conjugate gradient minimizer routine provided in Chapter 5.

Example. Fitting the rate constant from multiresponse dynamic
batch reactor data

Here, we apply this routine to estimate the value of the rate constant k1 of the reaction,
assumed elementary, A+ B → C, from the multiresponse data of Table 8.3. The following
code employs sim anneal MR.m to fit the rate constant:

% input predictors and response data
time hr = [0.5; 1; 1.5; 2; 3; 4; 5; 6; 7; 8; 9; 10];
time s = time hr*3600; % convert hr to sec
X pred = time s; % set predictor matrix
cA = [0.0985; 0.0637; 0.0500; 0.0462; 0.0363; 0.0248; . . .

0.0171; 0.0168; 0.0131; 0.0150; 0.0140; 0.0134];
cB = [0.0995; 0.0651; 0.0596; 0.0453; 0.0384; 0.0247; . . .

0.0174; 0.0203; 0.0136; 0.0121; 0.0142; 0.0134];
cC = [0.001; 0.0357; 0.0501; 0.0512; 0.0682; 0.0747; . . .

0.0809; 0.0818; 0.0858; 0.0863; 0.0872; 0.0928];
N = length(time hr); L = 3;
Y = zeros(N,L); % set response data matrix
Y(:,1) = cA; Y(:,2) = cB; Y(:,3) = cC;
% set parameters for simulated annealing run
N iter = 1000;
k1 0 = 0.001;
fun yhat = ‘calc Yhat reaction ex dynamic MR’;
freq quench = 1e-2; freq reset = 1e-2;
% perform the simulated annealing run
[k1, det S, det S 0] = . . .

sim anneal MR(X pred, Y, fun yhat, . . .
k1 0, N iter, freq quench, freq reset),

The results of this calculation are

k1 = 0.0024
det S = 5.7277e-013
det S 0 = 2.3605e-011

Here, we have supplied the following routine to predict the response data matrix as a function
of θ:

% calc Yhat reaction ex dynamic MR.m
function Y hat = calc Yhat reaction ex dynamic MR(k1, X pred);
t span = X pred’; % set times at which to report concentrations

Bayesian multiresponse regression 419

x 0 = [0.1; 0.1; 0]; % set initial condition
% perform dynamic simulation
[t traj,x traj] = ode45(@batch kinetics dynamics ex, . . .

t span, x 0, [], k1);
% extract response predictions
Y hat = x traj;
return;

batch kinetics dynamics ex.m is the same routine as used previously in the least-squares
fitting of k1 from the single-response data set cC vs. t.

MCMC simulation with the multiresponse marginal posterior density

With the multiresponse marginal posterior density p(θ|Y) ∝ |S(θ)|−N/2, we use MCMC
simulation to estimate posterior predictions of the form

E[g|Y] =
∫
�P

g(θ)p(θ|Y)dθ (8.200)

We generate, with the Metropolis algorithm, a sequence of states {θ[m]} drawn from p(θ|Y),
and approximate the expectation by

E[g|Y] ≈ 1

Ns

Ns∑
m=1

g
(
θ[m]

)
(8.201)

Such calculations are performed by the routine

g pred = Bayes MCMC pred MR(X pred, Y, . . .
fun yhat, fun g, theta 0, MCOPTS, Param);

X pred, Y, fun yhat, and theta 0 take their previous definitions. fun g is the name of a
function that computes g(θ):

g = feval(fun g, theta, Param);

Param is an optional structure that can be passed to fun g.

MCOPTS controls the performance of the MCMC simulation and has the following fields
(and default values):

MCOPTS.N equil: the number of equilibration MC iterations to be performed before sam-
pling begins (1000).

MCOPTS.N samples: the number of MC iterations run during sampling. The larger this
number, the more accurate the prediction (10 000).

MCOPTS.delta theta: the size of the displacements in each parameter during an MC move
relative to average magnitudes of each parameter (0.1). This value is changed to meet
the target fraction of accepted moves.

MCOPTS.accept tar: target fraction of proposed MC moves that are accepted (0.3).

420 8 Bayesian statistics and parameter estimation

2

2

1

1

1 1

θ 1

2 2
θ1 ×1 −

Figure 8.9 Marginal 1-D density for k1 computed from multiresponse data of a chemical reaction
using MCMC simulation.

This MCMC routine is used in turn by other routines that compute marginal posterior
densities and generate HPD regions. 1-D marginal densities and their corresponding HPD
regions are generated by the routines

[bin 1Dc, bin 1Dp, frac above, frac below] = . . .
Bayes MCMC 1Dmarginal MR(X pred, Y, . . .
fun yhat, j plot 1D, val lo, val hi, . . .
N bins, theta 0, MCOPTS);

and

[HPD lo, HPD hi] = Bayes 1D HPD MR(. . .
bin 1Dc, bin 1Dp, j plot 1D, alpha);

The definitions of the arguments in these routines are the same as for the corresponding
single-response routines.

For the multiresponse data of Table 8.3 for the chemical reaction A+ B → C, the
following code computes the 1-D marginal posterior density for k1 (Figure 8.9) and the
corresponding 95% HPD.

k1 0 = k1;
j plot 1D = 1;
val lo = 0.001; val hi = 0.004;
N bins = 100;
MCOPTS.N equil = 1000;
MCOPTS.N samples = 25000;
[bin 1Dc, bin 1Dp, frac above, frac below] = . . .

Analysis of composite data sets 421

Bayes MCMC 1Dmarginal MR(X pred, Y, . . .
fun yhat, j plot 1D, val lo, val hi, . . .
N bins, k1 0, MCOPTS);

% compute 95% HPD
alpha = 0.05;
[HPD lo,HPD hi] = Bayes 1D HPD MR(. . .

bin 1Dc, bin 1Dp, j plot 1D, alpha),

About the most probable estimate of k1 = 0.0024, this analysis of the multiresponse data
of Table 8.3 yields a 95% HPD region for k1 of

0.0022 ≤ k1 ≤ 0.0026 (8.202)

2-D marginal posterior densities and HPD regions are computed from MCMC simulation
for multiresponse data using the routines

[bin 2Dic, bin 2Djc, bin 2Dp] = . . .
Bayes MCMC 2Dmarginal MR(X pred, Y, . . .

fun yhat, i plot 2D, j plot 2D, val lo, val hi, . . .
N bins, theta 0, MCOPTS);

and

HPD 2D = Bayes 2D HPD MR(bin 2Dic, bin 2Djc, bin 2Dp, . . .
i plot 2D, j plot 2D, alpha);

Again, the arguments in these routines carry the same definitions as the corresponding ones
in the routines for single-response data.

Analysis of composite data sets

Above, we have assumed that we measure the same set of responses in each experiment;
however, often we estimate parameters from composite data sets that mix different types of
data. Here, we treat composite data sets using the sequential learning aspects of Bayesian
analysis; hence, the routines take the suffix MRSL for multiresponse sequential-learning.

Let us say that we have some sets of response data Y 〈1〉, Y 〈2〉, . . . , Y 〈D〉 that provide
information about the same set of parameters θ ∈ �P but that are dimensioned differently
and have different error properties. We want to compute the marginal posterior density,
taking into account the information provided by all sets of data,

p
(
θ
∣∣Y 〈1〉, Y 〈2〉, . . . , Y 〈D〉) (8.203)

For each data set, we propose a model that predicts the responses Ŷ 〈 j〉(θ), and compute the
L 〈 j〉 × L 〈 j〉 “sum of squared errors” matrix

S〈 j〉(θ) = [
Y 〈 j〉 − Ŷ 〈 j〉(θ)

]T[
Y 〈 j〉 − Ŷ 〈 j〉(θ)

]
(8.204)

422 8 Bayesian statistics and parameter estimation

We analyze each data set in turn, using for the first data set a noninformative prior. The
marginal posterior after the first data set is

p
(
θ
∣∣Y 〈1〉) ∝ ∣∣S〈1〉(θ)

∣∣−N 〈1〉/2
(8.205)

N 〈1〉 is the number of experiments in the first data set.
We then use p(θ|Y 〈1〉) as the prior for the second set of data, in lieu of the noninformative

prior p(θ) ∼ c. Thus, after analyzing the two data sets, Bayes’ theorem yields the marginal
posterior density

p
(
θ
∣∣Y 〈1〉, Y 〈2〉) ∝ ∣∣S〈1〉(θ)

∣∣−N 〈1〉/2∣∣S〈2〉(θ)
∣∣−N 〈2〉/2

(8.206)

Continuing this process, the marginal posterior density with all D sets is

p
(
θ
∣∣Y 〈1〉, Y 〈2〉, . . . , Y 〈D〉) ∝ D∏

d=1

∣∣S〈d〉(θ)
∣∣−N 〈d〉/2

(8.207)

Therefore, the most probable θ-value, obtained by considering all sets of data, minimizes
the cost function

Fcost(θ) = − ln
[

p
(
θ
∣∣Y 〈1〉, Y 〈2〉, . . . , Y 〈D〉)] = 1

2

∑D
d=1 N 〈d〉 ln

∣∣S〈d〉(θ)
∣∣ (8.208)

Let θM be the most probable estimate that minimizes (8.208). We then can test hypotheses,
compute marginal 1-D or 2-D densities, and generate HPD regions, from MCMC simulation
with the marginal posterior density (rescaled to reduce round-off error),

p
(
θ
∣∣Y 〈1〉, Y 〈2〉, . . . , Y 〈D〉) ∝ D∏

d=1

{ ∣∣S〈d〉(θ)
∣∣∣∣S〈d〉(θM

)∣∣
}−N 〈d〉/2

(8.209)

Use of the routines that perform these calculations is demonstrated below for the example
of fitting the rate constant k1 for the reaction A+ B → C from the combined batch reactor
data of Table 8.1 and Table 8.3.

Example. Numerical analysis of composite data sets, applied to the
problem of estimating the rate constant of a reaction from multiple
reactor data sets

We employ a structure MRSLData to store the predictor and response values for each data
set with the following fields:

MRSLData.num sets: the number of data sets in the composite set of data;
MRSLData.P: the number of parameters to be fitted;
MRSLData.M: a vector containing for each data set the number of predictors;
MRSLData.L: a vector containing for each data set the number of responses;
MRSLData.N: a vector containing for each data set the number of experiments;
MRSLData.X pred j: for each data set j, the N×M matrix of predictors;
MRSLData.Y j: for each data set j, the N×L matrix of measured responses;
MRSLData.fun yhat j: for each data set j, the name of a routine that predicts the response

values,

Analysis of composite data sets 423

Y hat = feval(fun yhat j, theta, X pred j);

The following code sets the MRSLData structure for a composite data set combining the
results of Table 8.1 and Table 8.3:

% specify the number of data sets
MRSLData.num sets = 2;
% specify the number of parameters to be fitted
MRSLData.P = 1;
% allocate memory for dimensioning parameters
MRSLData.N = zeros(MRSLData.num sets,1);
MRSLData.L = zeros(MRSLData.num sets,1);
MRSLData.M = zeros(MRSLData.num sets,1);
% -- DATA SET # 1 -- TABLE 1
% For the first data set (the contents of
% Table 1), input the predictor matrix.
MRSLData.X pred 1 = [0.1 0.1; 0.2 0.1; 0.1 0.2; . . .

0.2 0.2; 0.05 0.2; 0.2 0.05];
% input the response data matrix
MRSLData.Y 1 = [0.0246e-3; 0.0483e-3; 0.0501e-3; . . .

0.1003e-3; 0.0239e-3; 0.0262e-3];
% specify the name of the routine that predicts
% the responses.
MRSLData.fun yhat 1 = ‘calc yhat kinetic ex table1’;
% set the dimension parameters for the data set
MRSLData.N(1) = size(MRSLData.Y 1,1);
MRSLData.L(1) = size(MRSLData.Y 1,2);
MRSLData.M(1) = size(MRSLData.X pred 1,2);
% -- DATA SET # 2 -- TABLE 3
% For the second data set (the contents of Table
% 3), input the predictor matrix
time hr = [0.5; 1; 1.5; 2; 3; 4; 5; 6; 7; 8; 9; 10];
time s = time hr*3600; % convert hr to sec
MRSLData.X pred 2 = time s; % set predictor matrix
% input the measured response data matrix
cA = [0.0985; 0.0637; 0.0500; 0.0462; 0.0363; 0.0248; . . .

0.0171; 0.0168; 0.0131; 0.0150; 0.0140; 0.0134];
cB = [0.0995; 0.0651; 0.0596; 0.0453; 0.0384; 0.0247; . . .

0.0174; 0.0203; 0.0136; 0.0121; 0.0142; 0.0134];
cC = [0.001; 0.0357; 0.0501; 0.0512; 0.0682; 0.0747; . . .

0.0809; 0.0818; 0.0858; 0.0863; 0.0872; 0.0928];
MRSLData.N(2)= length(cA);
MRSLData.L(2) = 3;
MRSLData.M(2) = size(MRSLData.X pred 2,2);
MRSLData.Y 2 = zeros(MRSLData.N(2),MRSLData.L(2));
MRSLData.Y 2(:,1) = cA;

424 8 Bayesian statistics and parameter estimation

MRSLData.Y 2(:,2) = cB;
MRSLData.Y 2(:,3) = cC;
% specify name of routine that predicts the response
% data matrix for this set of experiments
MRSLData.fun yhat 2 = ‘calc Yhat reaction ex dynamic MR’;

calc Yhat reaction ex dynamic MR.m is the same routine as used previously in fitting the
rate constant using the data of Table 8.3 alone. The following routine predicts the results in
the experiments of Table 8.1 for a trial value of the rate constant:

% calc yhat kinetic ex table1.m
function y hat = calc yhat kinetic ex table1(k 1, X pred);
conc A = X pred(:,1); % [A] in each experiment
conc B = X pred(:,2); % [B] in each experiment
y hat = k 1.*conc A.*conc B;
return;

The cost function and marginal posterior density for the composite data set are computed
by the routine

[F cost, det S, posterior density] = . . .
calc MRSL posterior(theta, MRSLData, det S ref);

For the input value of theta, and the composite data set MRSLData, F cost is the cost function
value, det S is a vector of the |S〈d〉(θ)| values in each data set. det S ref is an optional vector
of values |S〈d〉(θ(ref))| used to rescale the posterior density, as above for θ(ref) = θM. If this
argument is not included, default values of 1 are used.

The following code computes the cost function and |S〈d〉(θ)| values for an initial rate
constant guess of k[0]

1 = 0.001:

theta 0 = 0.001;
[F cost 0, det S 0] = calc MRSL posterior(theta 0, MRSLData),

The results are

F cost 0 = −203.6059
det S 0 = 1.0e-008 *

0.6012
0.0024

From an initial guess of the parameters, simulated annealing with quenching is used to search
for the global minimum (the returned value is at least a local minimum). This calculation
is performed by the routine

[theta, F cost, det S] = sim anneal MRSL(. . .
MRSLData, theta 0, N iter, . . .
freq quench, freq reset, T 0);

Analysis of composite data sets 425

The arguments N iter, freq quench, freq reset, and T 0 have the same definitions as pre-
viously. If T 0 is not included in the list of arguments, a default value of 10|Fcost(θ[0])| is
used.

The following code fits the rate constant to the composite data of Table 8.1 and Table 8.3:

N iter = 1000; freq quench = 0.01; freq reset = 0.01;
[theta, F cost, det S] = sim anneal MRSL(. . .

MRSLData, theta 0, N iter, . . .
freq quench, freq reset),

The results are

theta = 0.0025
F cost = −246.3639
det S = 1.0e-011*

0.5624
0.0620

Thus, we have an estimate k1 = 0.0025 from the composite data.
From MCMC simulation, we can compute posterior expectations and 1-D and 2-D

marginal densities with the routines

g pred = Bayes MCMC pred MRSL(. . .
MRSLData, det S ref, . . .

fun g, theta 0, MCOPTS, Param);
[bin 1Dc, bin 1Dp, frac above, frac below] = . . .

Bayes MCMC 1Dmarginal MRSL(. . .
MRSLData, det S ref, . . .

j plot 1D, val lo, val hi, . . .
N bins, theta 0, MCOPTS);

[bin 2Dic, bin 2Djc, bin 2Dp] = . . .
Bayes MCMC 2Dmarginal MRSL(. . .

MRSLData, det S ref, . . .
i plot 2D, j plot 2D, val lo, val hi, . . .
N bins, theta 0, MCOPTS);

The results from these routines can be used with Bayes 1D HPD MR.m and
Bayes 2D HPD MR.m to compute HPD regions.

The following code computes the marginal density for the rate constant from the com-
posite data and the corresponding 95% HPD region:

det S ref = det S; % use most probable state as reference.
j plot 1D = 1;
val lo = 0.002; val hi = 0.003;
N bins = 500;
MCOPTS.N equil = 1000; MCOPTS.N samples = 25000;
[bin 1Dc, bin 1Dp, frac above, frac below] = . . .

426 8 Bayesian statistics and parameter estimation

2

2

1

1

2 22 2 2 2
×1 −

×1

)
(θ

1

θ1

Figure 8.10 Marginal posterior density for the rate constant computed from the composite data set.

Bayes MCMC 1Dmarginal MRSL(. . .
MRSLData, det S ref, . . .
j plot 1D, val lo, val hi, . . .
N bins, theta, MCOPTS);

% generate the 95% HPD for k1
alpha = 0.05;
[HPD lo, HPD hi] = Bayes 1D HPD MR(bin 1Dc, bin 1Dp, . . .

j plot 1D, alpha);
HPD HW = 0.5*(HPD hi-HPD lo),

These calculations return the parameter estimate and the half-width of the 96% confidence
interval:

theta = 0.0025
HPD HW = 4.8e-005

As expected, the confidence interval using both data sets is tighter than those computed
using either one individually. The 1-D marginal posterior density is shown in Figure 8.10.
Compare the breadth of this marginal density to that obtained from the data of Table 8.3
alone, Figure 8.9.

Bayesian testing and model criticism

Above, we have said that we cannot state with confidence that θ does not take any particular
value that lies with a HPD credible region. While this argument is common, it falls outside

Bayesian testing and model criticism 427

of the structure of statistical decision theory. We present here the Bayesian approach to
evaluating the relative merits of alternative hypotheses or models, Bayesian testing.

Null hypothesis testing

We begin by considering, after taking the data Y, which of two hypotheses is more probably
true. Let the null hypothesis H0 be that θ ∈ �0 ⊂ �P , and let the alternative hypothesis H1

be that θ ∈ �1 ⊂ �P . Often, �1 is the complement set to �0 so that H1 is the hypothesis
that θ /∈ �0. The prior and posterior probabilities of each hypothesis being true are

P(Hj) =
∫

� j

p(θ)dθ P(Hj |Y) =
∫

� j

p(θ|Y)dθ (8.210)

where the marginalized priors and posteriors are p(θ) and p(θ|Y) respectively. For P(Hj)
to be defined, we again require p(θ) to be proper. We would like to control, in some sense,
the effect of the prior to see what the data are telling us about which hypothesis is more
likely to be true. Therefore, to compare the relative amounts by which the data increase or
decrease our beliefs in the hypotheses, we compute the Bayes factor

B01(Y) = P(H0|Y)/P(H0)

P(H1|Y)/P(H1)
(8.211)

If B01(Y) � 1, H0 is favored by the data. If B01(Y) � 1, H1 is favored. The exact value of
B01(Y) is quite sensitive to the choice of prior, and in particular, we cannot use improper
priors here. Let us say that we have used the simple fix (8.71) of setting p(θ) to zero outside
of �θ and to a uniform value inside �θ . Then, P(Hj) is merely the ratio of the volume
of � j to that of �θ , and is thus highly sensitive to the (subjective) choice of �θ . For an
improper prior with � j of finite volume, P(Hj) is zero and the Bayes factor is not defined.
Robert (2001) discusses alternative means to make proper a prior using training sets to fit
a prior and then applying Bayesian analysis to the remaining data; however, such methods
fall somewhat outside of the Bayesian paradigm. For now, we retain the use of (8.71), yet
note that the boundaries of �θ should be selected with some care. Clearly, we should attach
significance to the value of the Bayes factor only if it is far greater or far less than 1. Jeffreys
(1961) suggests the following interpretation:

0 < log10[B01(Y)] ≤ 0.5 evidence against H0 is poor
0.5 < log10[B01(Y)] ≤ 1 evidence against H0 is substantial
1 < log10[B01(Y)] ≤ 2 evidence against H0 is strong
2 < log10[B01(Y)] evidence against H0 is decisive

(8.212)

It is common in frequentist statistics to consider a point-null hypothesis that θ takes exactly
a specific value θ′. When θ is continuous, such a hypothesis has zero probability of being
true and is ill posed in the Bayesian framework. We can approximate such a point-null
hypothesis as H0 :

{
θ|‖θ − θ′‖ ≤ ε

}
, as long as the prior is proper.

428 8 Bayesian statistics and parameter estimation

Model criticism and selection

Similar techniques are used to judge which of several models best fits the data. Let us
propose several models α = 1, 2, . . . of which one is believed to be the “true” model. Let
Mα be the event that model α is the true one, and let Y be the event that we observe the
particular data set Y. Then, Bayes’ theorem applied to the joint probability P(Mα ∩ Y)
yields the posterior probability that model α is the true one, given the data Y:

P(Mα|Y) = P(Y |Mα)P(Mα)∑
α′

P(Y |Mα′)P(Mα′)
(8.213)

To remove the dependence on the priors P(Mα′), we compare models α and β by computing
the Bayes factor

Bαβ(Y) = P(Mα|Y)/P(Mα)

P(Mβ |Y)/P(Mβ)
= P(Y |Mα)

P(Y |Mβ)
(8.214)

These probabilities P(Y |Mα) are the priors of the data set, under model α:

P(Y |Mα) =
∫

�P〈α〉

∫
�〈α〉>0

p〈α〉
(
Y
∣∣θ〈α〉, �〈α〉)p〈α〉

(
θ〈α〉, �〈α〉)d�〈α〉dθ〈α〉 (8.215)

θ〈α〉 ∈ �P 〈α〉
is the vector of parameters for model α and �〈α〉 is the covariance matrix of

the random error. The prior is p〈α〉(θ〈α〉, �〈α〉) and the likelihood is p〈α〉(Y |θ〈α〉, �〈α〉).
The integrals (8.215) can be computed by MCMC simulation. We generate a sequence

(θ〈α〉,m, �〈α〉,m) at random from a sampling density πS(θ〈α〉, �〈α〉). For a number Ns of
samples, we approximate P(Y |Mα) as

P(Y |Mα) ≈

Ns∑
m=1

p〈α〉
(
Y
∣∣θ〈α〉, m, �〈α〉,m) p〈α〉

(
θ〈α〉, m, �〈α〉, m

)
πs
(
θ〈α〉, m, �〈α〉, m

)
Ns∑

m=1

p〈α〉
(
θ〈α〉,m, �〈α〉,m)

πs
(
θ〈α〉,m, �〈α〉,m)

(8.216)

A common choice of πS is the integrand of (8.215). This approach is quite general, but
the sampling is carried out more easily for single-response data, for which �〈α〉 = σ〈α〉. In
addition to the importance-sampling method described here, a number of other MCMC
techniques tailored to the computation of Bayes factors are available, see Chen et al.
(2000).

Schwartz’s Bayesian information criterion (BIC)

Here we provide an approximation of the Bayes factor for single-response data that does
not require MCMC simulation. Let the sum of squared errors for α model be

S〈α〉
(
θ〈α〉

) = N∑
k=1

[
y〈α〉k

(
θ〈α〉

)− yk

]2
(8.217)

where the model prediction for experiment k is y〈α〉k (θ〈α〉) and the observed responses are

Bayesian testing and model criticism 429

stored in the vector y ∈ �N . The likelihood function is

p〈α〉
(
y|θ〈α〉, σ 〈α〉

) = (2π)−N/2
(
σ 〈α〉

)−N
exp

{
− S〈α〉

(
θ〈α〉

)
2
(
σ 〈α〉

)2

}
(8.218)

and the integral (8.215) is

p〈α〉(y|Mα) =
∫ ∞

0
dσ 〈α〉

∫
�P〈α〉

p〈α〉
(
y|θ〈α〉, σ 〈α〉)p〈α〉

(
θ〈α〉, σ 〈α〉

)
dθ〈α〉 (8.219)

Let θ
〈α〉
M be the least-squares estimate minimizing S〈α〉(θ〈α〉), and let σ

〈α〉
MLE be the value

maximizing the likelihood (8.218):(
σ
〈α〉
MLE

)2 = 1

N
S〈α〉

(
θ
〈α〉
M

)
(8.220)

For general forms of the prior p〈α〉(θ〈α〉, (σ 〈α〉), we expect the integral over all σ 〈α〉 to be
dominated by values in the vicinity of σ

〈α〉
MLE, so that

p〈α〉(y|Mα) = �σ 〈α〉
∫

�P〈α〉

p〈α〉
(
y|θ〈α〉, σ

〈α〉
MLE

)
p〈α〉

(
θ〈α〉, σ

〈α〉
MLE

)
dθ〈α〉 (8.221)

where �σ 〈α〉 is a measure of the breadth of the σ 〈α〉 distribution contributing to (8.219).
Let us use the prior (8.71) that is zero for θ〈α〉 /∈ �θ 〈α〉 and/or σ 〈α〉 /∈ �σ 〈α〉,

p〈α〉
(
θ〈α〉, σ 〈α〉

) = c〈α〉0

(
σ 〈α〉

)−1
Iθ 〈α〉

(
θ〈α〉

)
Iσ〈α〉

(
σ 〈α〉

)
(8.222)

Upon substitution of (8.222), (8.221) becomes

p〈α〉(y|Mα) = �σ 〈α〉c
〈α〉
0 (2π)−N/2

(
σ 〈α〉

)−(N+1)
Q〈α〉 (8.223)

where

Q〈α〉 =
∫

�P〈α〉

Iθ 〈α〉
(
θ〈α〉

)
exp

{
− S〈α〉

(
θ〈α〉

)
2
(
σ
〈α〉
MLE

)2

}
dθ〈α〉 (8.224)

Now, the value of S〈α〉(θ〈α〉) scales roughly linearly with the number N of observations, and
is larger when σ

〈α〉
MLE is larger. To correct for these effects and gain a better measure of the

systematic departure of the model predictions from the data, let us define

h〈α〉
(
θ〈α〉

) = S〈α〉
(
θ〈α〉

)
N
(
σ
〈α〉
MLE

)2 (8.225)

Then, (8.224) becomes

Q〈α〉 =
∫

�P〈α〉

Iθ 〈α〉
(
θ〈α〉

)
exp

{
−N

2
h〈α〉

(
θ〈α〉

)}
dθ〈α〉 (8.226)

h〈α〉(θ〈α〉) has a minimum at the same θ
〈α〉
M as S〈α〉(θ〈α〉); therefore, let us use the quadratic

(Laplace) expansion,

h〈α〉
(
θ〈α〉

) ≈ h〈α〉
(
θ
〈α〉
M

)+ (
θ〈α〉 − θ

〈α〉
M

)T
H 〈α〉(θ〈α〉 − θ

〈α〉
M

)
(8.227)

430 8 Bayesian statistics and parameter estimation

where H 〈α〉 > 0 is the Hessian of h〈α〉(θ〈α〉) at θ
〈α〉
M . Substituting this quadratic expan-

sion into (8.226) and assuming Iθ 〈α〉 (θ〈α〉) = 1 everywhere where exp{− 1
2 Nh〈α〉(θ〈α〉)} is

significantly nonzero yields

Q〈α〉 = exp
{
− 1

2 Nh〈α〉
(
θ
〈α〉
M

)}
T 〈α〉 (8.228)

where

T 〈α〉 =
∫

�P〈α〉

exp

{
−1

2

(
θ〈α〉 − θ

〈α〉
M

)T(
N H 〈α〉)(θ〈α〉 − θ

〈α〉
M

)}
dθ〈α〉 (8.229)

Using the Gaussian integral∫
�P

exp

[
−1

2
zT Az + bTz

]
dz = (2π)P/2

|A|1/2
exp

[
1

2
bT A−1b

]
(8.230)

we obtain

T 〈α〉 = (2π)P 〈α〉/2

|N H 〈α〉|1/2
=

(
2π

N

)
P 〈α〉/2|H 〈α〉|−1/2 (8.231)

Thus, from (8.228) and (8.223), we have

p〈α〉(y|Mα) = C 〈α〉 exp

{
−N

2
h〈α〉

(
θ
〈α〉
M

)}(
2π

N

)P 〈α〉/2

(8.232)

where

C 〈α〉 = �σ 〈α〉c〈α〉0

(2π)N/2(σ 〈α〉)(N+1)
∣∣H 〈α〉∣∣1/2 (8.233)

We have then an approximation for the Bayes factor (8.214):

Bαβ(y) = p(y|Mα)

p(y|Mβ)
≈

C 〈α〉 exp

{
− S〈α〉

(
θ
〈α〉
M

)
2
(
σ
〈α〉
MLE

)2

}(
2π

N

)P 〈α〉/2

C 〈β〉 exp

{
− S〈β〉

(
θ
〈β〉
M

)
2
(
σ
〈β〉
MLE

)2

}(
2π

N

)P 〈β〉/2
(8.234)

where we have used (8.225). Taking the natural logarithm of (8.234), we have

ln[Bαβ(y)] ≈ ln C 〈α〉 − S〈α〉
(
θ
〈α〉
M

)
2
(
σ
〈α〉
MLE

)2 +
(

P 〈α〉

2

)
ln

(
2π

N

)

−
[

ln C 〈β〉 − S〈β〉
(
θ
〈β〉
M

)
2
(
σ
〈β〉
MLE

)2 +
(

P 〈β〉

2

)
ln

(
2π

N

)]
(8.235)

If we assume that C 〈α〉 and C 〈β〉 are of the same order of magnitude, and define Schwartz’s
Bayesian Information Criterion (BIC),

BIC〈α〉(y) = −
[

S〈α〉
(
θ
〈α〉
M

)
2
(
σ
〈α〉
MLE

)2 +
(

P 〈α〉

2

)
ln

(
N

2π

)]
(8.236)

MATLAB summary 431

then

ln[Bαβ(y)] ≈ BIC〈α〉(y)− BIC〈β〉(y) (8.237)

This approximate result tells us that we should choose the model with the largest value
of BIC. The second term in the square brackets in (8.236) adds to the weighted sum of
squared errors an additional penalty per parameter, encouraging the use of models with
smaller numbers of adjustable parameters. Clearly, this is only an approximation of the
Bayes factor, and should be applied only when N is large. For more exact analysis, the
Bayes factor should be computed by MCMC evaluation of the integrals (8.219).

Further reading

This chapter has merely introduced the subject of Bayesian statistics, a field that is far
broader than the subject of estimating parameters from data with normally-distributed errors
discussed here. For further reading, comprehensive graduate-level overviews of Bayesian
statistics are provided by Robert (2001) and Leonard & Hsu (2001). A text suitable for
undergraduates is Bolstad (2004). Among specialized texts, Box & Tiao (1973) treats in
further depth the problem of parameter estimation; however, it does not discuss advanced
MCMC techniques. For more on Bayesian Monte Carlo methods, consult Chen et al. (2000).
For a more philosophical, conceptual treatment of Bayesian statistics see Bernardo & Smith
(2000).

MATLAB summary

In this chapter we have addressed the Bayesian approach to estimating parameters from data
that are assumed to have normally-distributed errors. The MATLAB statistics toolkit offers
several functions for parameter estimation, whose results agree with both the Bayesian
approach taken here and the traditional frequentist formalism. regress fits a linear model to
single-response data and returns confidence intervals on the model parameters and predicted
responses. nlinfit fits the parameters of a nonlinear model to single-response data, with
confidence intervals on the parameters and predictions returned by nlparci and nlpredci
respectively. These routines use a quadratic expansion of the sum of squared errors and
thus, in general, give confidence intervals that are too wide. When the MATLAB statistics
toolkit is unavailable, linear models may be treated explicitly quite easily, and for nonlinear
models the MCMC routines presented here may be used (and give more accurate results
without using quadratic expansions of S(θ)).

For single-response data, Bayes MCMC pred SR.m computes the expectation of a
vector g(θ, σ). This routine is used in turn by Bayes MCMC 1Dmarginal SR.m and
Bayes MCMC 2Dmarginal SR.m to compute 1-D and 2-D marginal densities. The outputs
of these routines are used to compute 1-D and 2-D HPD regions by Bayes 1D HPD SR.m
and Bayes 2D HPD SR.m respectively.

432 8 Bayesian statistics and parameter estimation

Table 8.4 Measured values of Nu for values
of Re, Pr in the laminar flow regime of
forced convection through a packed bed

Nu Re Pr

1.9676 1 0.73
0.8986 0.1 0.73
0.4261 0.01 0.73
2.5098 1 1.5
1.1521 0.1 1.5
0.5520 0.01 1.5

The most probable parameter vector is computed from multiresponse data using
sim anneal MR.m. The resulting marginal posterior density on θ is used to compute expec-
tations of g(θ) by Bayes MCMC pred MR.m. Marginal densities and HPD regions are
computed by similar routines to those above, with MR substituted for SR.

Parameters in a nonlinear model are fit to a composite data set of single-
and/or multiresponse data by sim anneal MSRL.m. Bayes MCMC pred MSRL.m com-
putes posterior estimates, and is used by Bayes MCMC 1Dmarginal MRSL.m and
Bayes MCMC 2Dmarginal MRSL.m to compute 1-D and 2-D marginal posterior densities.
The output from these routines can be used with the MR HPD algorithms to generate HPD
regions.

Problems

8.A.1. We are studying a system in which a fluid flows slowly through a packed bed of solid
pellets, and are interested in the transfer of heat between the solid pellets and the fluid. We
expect the heat transfer coefficient h to have the dependence

h = h(vf, D, ρ, µ, k, Ĉp) (8.238)

where vf is the superficial velocity of the fluid, D is the pellet diameter, ρ is the
fluid density, µ is the fluid viscosity, k is the fluid thermal conductivity, and Ĉp is
the specific heat of the fluid. Through dimensionless analysis, we write this dependence
as

Nu = Nu(Re, Pr) (8.239)

where the Nusselt, Prandtl, and Reynolds numbers are

Nu = h D

k
Pr = µĈp

k
Re = ρvf D

µ
(8.240)

We have taken the data of Table 8.4 in the laminar flow regime. We propose the model

Nu = α0(Re)α1 (Pr)α2 (8.241)

Problems 433

Table 8.5 Measured substrate concentrations vs. time in a batch bioreactor

time (min) [S]0 = 0.5 M [S]0 = 0.75 M [S]0 = 1 M [S]0 = 1.5 M [S]0 = 2 M

10 0.4288 0.6735 0.9299 1.4175 1.9265
20 0.3554 0.6048 0.8504 1.3615 1.8773
30 0.2701 0.5089 0.7767 1.2832 1.8091
45 0.1827 0.3977 0.6652 1.1763 1.7191
60 0.1210 0.2893 0.5448 1.0999 1.6278
90 0.0196 0.1064 0.3030 0.8661 1.4420

To obtain a linear model, we take the base-10 logarithm,

log10 Nu = log10 α0 + α1 log10 Re + α2 log10 Pr (8.242)

Set up the system of linear algebraic equations that is solved to obtain the least-squares
parameter estimate. Then, solve this system by Gaussian elimination. Provide 95% confi-
dence intervals for each of the model parameters. Do all calculations by hand and show
complete results.

8.A.2. Repeat problem 8.A.1, but now use regress.

8.A.3. Fit again the heat transfer data of problem 8.A.1, but now do not transform the data
to make the model linear. Compute the fitted parameter estimate and the 95% confidence
intervals using the nontransformed nonlinear model.

8.A.4. Compute more accurate 95% confidence intervals for the data of problem 8.A.1,
without taking a quadratic expansion of S(θ), through MCMC simulation.

8.B.1. We are studying the enzymatic conversion of a substrate S to a product P. For several
batch reactor kinetic experiments at the same temperature and pH, but at different initial
substrate concentrations [S]0, we have measured [S] vs. time (Table 8.5). The reactor has
a fluid volume VR of 0.1 l and contains a mass mE of 10 mg of enzyme. A balance on the
substrate yields the governing ODE

d

dt
[S] = −

(
mE

αcVR

)
r̂S→P (8.243)

where αc = 106 µmol/mol is a conversion factor and r̂S→P is the rate of substrate conversion
in micromoles per minute per gram of enzyme. We propose a Michelis–Menten model with
substrate inhibition,

r̂S→P = Vm[S]

Km + [S]+ K−1
si [S]2

(8.244)

From these data, find the most probable parameter values and use MCMC simulation to
generate 1-D 95% HPD credible regions for each one.

8.B.2. In problem 8.B.1, we fit the data only to measurements of the substrate conversion as
a function of time, but let us say that we also measure the product concentrations (Table 8.6).

434 8 Bayesian statistics and parameter estimation

Table 8.6 Measured product concentrations vs. time in a batch bioreactor

time (min) [S]0 = 0.5 M [S]0 = 0.75 M [S]0 = 1 M [S]0 = 1.5 M [S]0 = 2 M

10 0.0712 0.0695 0.0653 0.0767 0.0656
20 0.1476 0.1576 0.1531 0.1461 0.1123
30 0.2265 0.2382 0.2274 0.2202 0.1912
45 0.3120 0.3423 0.3450 0.3116 0.2821
60 0.3770 0.4671 0.4599 0.4022 0.3682
90 0.4722 0.6402 0.6833 0.6379 0.5502

Table 8.7 Additional rate data for enzymatic
substrate conversion reaction

[S] (M)
rate of substrate conversion
(µmol/(min mgE))

0.1 36.512
0.25 63.224
0.5 76.881
0.75 77.607
1.0 74.444
1.5 65.001
2.0 58.391

From stoichiometry, we expect the instantaneous substrate and product concentrations to
be related by

[S]0 − [S] = [P] (8.245)

Due to random measurement errors, (8.245) may not be satisfied exactly, but still it is likely
that concurrent measurements of the two concentrations are highly correlated. Using the
data from Table 8.5 and Table 8.6, find the best fit of the parameters and generate 1-D 95%
HPD credible regions for each.

8.B.3. Using the bioreactor data of Table 8.5 and Table 8.6, compute the probability that the
reaction rate (8.244) at a substrate concentration of 1 M is between 70 and 80 µmol/(min
mgE).

8.B.4. You have available additional rate data (Table 8.7) for this substrate conversion
reaction at the same conditions, but from experiments that were conducted in a different
apparatus and so may have a different level of accuracy than those of Table 8.5 and Table 8.6.
Using all available data, find the most probable values of the parameters and generate 1-D
95% HPD credible regions for each parameter.

8.C.1. Using all available data on the enzymatic kinetics of the substrate conversion reaction,
generate the probability distribution for the value of the reaction rate at a concentration of
1 M.

Problems 435

8.C.2. From the substrate conversion rate data, we would like to design a CSTR bioreactor
by choosing the inlet substrate conversion and inlet volumetric flow rate, within the limits

0 M ≤ [S]0 ≤ 2 M 0
l

min
≤ υ ≤ 1

l

min
(8.246)

that maximize the conversion rate in the bioreactor. If the uncertainty in the parameter values
is not too great, we get a reasonable design by simply using the most probable parameter
values. However, this approach completely neglects the uncertainty in the parameters them-
selves. Using statistical decision theory, compute the optimal inlet substrate concentration
and inlet flow rate, taking into account the effect of uncertainty.

8.C.3. Using the single-response data of Table 8.5 for the enzymatic substrate conversion
reaction, compute the Bayes factor for comparing the following models: (1) Michaelis–
Menten kinetics with substrate inhibition and (2) Michelis–Menten kinetics with no sub-
strate inhibition. Do the data strongly suggest that substrate inhibition is significant for this
system?

9 Fourier analysis

Fourier analysis treats the representation of periodic functions as linear combinations of sine
and cosine basis functions. In chemical engineering, Fourier analysis is applied to study
time-dependent signals in spectroscopy and to analyze the spatial structure of materials
from scattering experiments. Here, the basic foundation of Fourier analysis is presented,
with an emphasis upon implementation in MATLAB.

Fourier series and transforms in one dimension

We begin our discussion of Fourier analysis by considering the representation of a periodic
function f (t) with a period of 2P, f (t + 2P) = f (t). If f (t) has a finite number of local
extrema and a finite number of times t j ∈ [0, 2P] at which it is discontinuous, Dirichlet’s
theorem states that it may be represented as the Fourier series

f̃ (t) = 1

2
a0 +

∞∑
m=1

[
amcos

(
mπ t

P

)
+ bm sin

(
mπ t

P

)]
(9.1)

such that at all t′ where f (t) is continuous, f̃ (t ′) = f (t ′), and at all points t j where f (t) is
discontinuous, f̃ (t j) is the average of the right-and left-hand limits:

f̃ (t j) = f+(t j)+ f−(t j)

2
f+(t j) = lim

ε→0
f (t j + ε) f−(t j) = lim

ε→0
f (t j − ε) (9.2)

a0, {a1, a2, . . . }, and {b1, b2, . . . } are calculated using the orthogonality properties of sine
and cosine functions. First, to compute a0, we integrate f (t) over the period [0, 2P], and do
the same for f̃ (t):

2P∫
0

f (t)dt =
2P∫

0

f̃ (t)dt

=
2P∫

0

a0

2
dt +

∞∑
m=1

2P∫
0

[
am cos

(
mπ t

P

)
+ bm sin

(
mπ t

P

)]
dt (9.3)

As the cosine and sine terms integrate to 0,

a0 = 1

P

2P∫
0

f (t) dt (9.4)

436

Fourier series and transforms in one dimension 437

Next, we compute an, n = 1, 2, 3, . . . by multiplying both f (t) and f̃ (t) by cos(nπ t/P)
and integrating over [0, 2P]:

2P∫
0

f (t) cos

(
nπ t

P

)
dt =

2P∫
0

f̃ (t) cos

(
nπ t

P

)
dt (9.5)

Using the orthogonality properties
2 P∫
0

cos

(
mπ t

P

)
cos

(
nπ t

P

)
dt =

2P∫
0

sin

(
mπ t

P

)
sin

(
nπ t

P

)
dt = Pδmn

(9.6)2P∫
0

sin

(
mπ t

P

)
cos

(
nπ t

P

)
dt = 0

we obtain

an = 1

P

2P∫
0

f (t) cos

(
nπ t

P

)
dt n = 1, 2, 3, . . . (9.7)

A similar procedure, but multiplying by sin(nπ t/P) instead, yields

bn = 1

P

2P∫
0

f (t) sin

(
nπ t

P

)
dt n = 1, 2, 3, . . . (9.8)

The summations above are over an infinite number of terms, but if we truncate the series to
some finite order N, we obtain an approximate Fourier representation of the function:

f (t) ≈ 1

2
a0 +

N∑
m=1

[
am cos

(
mπ t

P

)
+ bm sin

(
mπ t

P

)]
(9.9)

To compute the 2N + 1 coefficients of this expansion, we might consider using numerical
quadrature for the necessary integrals; however, as N increases, so does the required number
of quadrature points, as the sine and cosine basis functions vary more rapidly with increasing
m. Thus, the amount of work necessary to obtain an approximate Fourier representation in
this manner scales as N 2. Below, we consider an alternative method that requires only
N log2 N « N 2 operations.

Gibbs oscillations

Convergence of the Fourier representation to the true function f (t) with increasing N can
be quite slow, particularly when the function is discontinuous or varies rapidly over a small
interval. As an example, consider the square pulse function

f (t) =
{

1, π/2 ≤ t ≤ 3π/2 P = π

0, t < π/2 or t > 3π/2 f (t + 2π) = f (t)
(9.10)

This function, and its approximate Fourier representations for N = 10, 20, are shown in
Figure 9.1. The Fourier series representations exhibit artificial Gibbs oscillations that are
not found in the true square pulse function.

438 9 Fourier analysis

1

1

1 2

t

ar t

t

ar t

t
ar

t
a

t

1

1

1 2

t
ar

t

t

Figure 9.1 Approximate Fourier representations of a square pulse showing Gibbs oscillations for: (a)
N = 10 and (b) N = 20.

Exponential form of the Fourier series

In practice, it is more convenient to write the Fourier series in terms of complex exponential
functions, using Euler’s formula

eiθ = cos θ + i sin θ (9.11)

from which we obtain

cos θ = 1

2
[eiθ + e−iθ] sin θ = 1

2i
[eiθ − e−iθ] (9.12)

Substituting (9.12) for the cosine and sine terms in (9.1), we obtain

f̃ (t) = 1

2
a0 +

∞∑
m=1

(
am

2
+ bm

2i

)
eimπ t/P +

∞∑
m=1

(
am

2
− bm

2i

)
e−imπ t/P (9.13)

Collecting terms, we have the exponential-form Fourier series

f̃ (t) =
∞∑

m=−∞
cm eimπ t/P (9.14)

with the coefficients (complex-valued)

c0 = 1

2
a0 cm>0 = am

2
+ bm

2i
cm<0 = am

2
− bm

2i
(9.15)

These coefficients may be computed directly from f (t) through use of the orthogonality

Fourier series and transforms in one dimension 439

property
+P∫

−P

e−imπ t/P einπ t/P dt = 2Pδmn (9.16)

to obtain

cn = 1

2P

+P∫
−P

e−inπ t/P f (t)dt (9.17)

The Fourier transform

The Fourier series representation assumes a known period 2P; however, often we wish to
analyze a function whose periodicity is unknown. From the exponential form of the Fourier
series, we obtain the Fourier transform by taking the limit P →∞. We begin by writing
the Fourier series as

f̃ (t) =
∞∑

m=−∞
cmeimπ t/P =

∞∑
m=−∞

 1

2P

+P∫
−P

e−imπ t ′/P f (t ′)dt ′

 eimπ t/P (9.18)

We now define

ωm = mπ

P
�ω = ωm+1 − ωm = π

P
(9.19)

such that

1

2P
= 1

2π

(π

P

)
= 1

2π
�ω

and thus

f̃ (t) =
∞∑

m=−∞

1

2π

 +P∫
−P

e−iωm t ′ f (t ′)dt ′

 eiωm t�ω (9.20)

In the limit P →∞, �ω → 0, and the summation becomes an integral,

∞∑
m=−∞

F(ωm)�ω →
+∞∫
−∞

F(ω)dω (9.21)

Thus, assuming that f̃ (t) = f (t), we obtain in the limit P →∞, the relation

f (t) = 1

2π

+∞∫
−∞

 +∞∫
−∞

e−iωt ′ f (t ′)dt ′

 eiωt dω (9.22)

This relation is satisfied by the Fourier transform pair

F(ω) = 1√
2π

+∞∫
−∞

f (t)e−iωt dt f (t) = 1√
2π

+∞∫
−∞

F(ω)eiωt dω (9.23)

440 9 Fourier analysis

One can propose alternative definitions that also satisfy (9.22), such as

F(ω) =
+∞∫
−∞

f (t)eiωt dt f (t) = 1

2π

+∞∫
−∞

F(ω)e−iωt dω (9.24)

As long as one is consistent, the convention used for the Fourier transform is arbi-
trary. Here, we use the definition consistent with MATLAB, (9.23). Note that as F(0) =(
1/
√

2π
) ∫ +∞

−∞ f (t)dt , we assume that f (t) integrates to zero.

The discrete Fourier transform

We next consider computing the Fourier transform from the N sampled data
{ f1, f2, . . . , fN } , fk = f (tk), taken at the N uniform times tk = (k − 1)�t . If we have
samples taken at nonuniform times, we use interpolation to generate the values of f (t) at
time values that are uniformly-spaced before computing the Fourier transform. We have no
data outside of the time period [0, (N− 1)�t], so let us assume that f (t) is periodic outside
of this range. As generally f1 �= fN , the period is

2P = N (�t) (9.25)

We wish to compute the Fourier transform

F(ω) = 1√
2π

+∞∫
−∞

f (t)e−iωt dt (9.26)

but as we have only N pieces of information {f1, f2, . . . , fN}, we can determine F(ω)
independently at only N different frequencies ωn. What are the frequencies for which we
compute F(ω)? First, if f (t + 2P) = f (t), we can represent f (t) as the Fourier series

f (t) =
∞∑

m=−∞
cmeiωm t ωm = mπ t

P
(9.27)

Thus, F(ω) takes the form

F(ω) = A
∞∑

m=−∞
F(ωm)δ(ω − ωm) (9.28)

as is shown by substitution into the inverse Fourier transform:

f (t) = 1√
2π

+∞∫
−∞

F(ω)eiωt dω = 1√
2π

+∞∫
−∞

[
A

∞∑
m=−∞

F(ωm)δ(ω − ωm)

]
eiωt dω

f (t) =
∞∑

m=−∞

(
A√
2π

)
F(ωm)

+∞∫
−∞

δ(ω − ωm)eiωt dω =
∞∑

m=−∞

[(
A√
2π

)
F(ωm)

]
eiωm t

(9.29)

Thus, for a function with f (t + 2P) = f (t), the Fourier transform is nonzero only at the

Fourier series and transforms in one dimension 441

discrete frequencies

ωm = m(�ω) �ω = mπ

P
m = 0,±1,±2, . . . (9.30)

While there are an infinite number of such frequencies, we have available only N data {f1,
f2, . . . , fN}. Let us choose the {ωn} to be the lowest ones satisfying (9.30),

ωm = m(�ω) �ω = π

P
m = 0,±1,±2, . . . ,±

(
N

2
− 1

)
,+N

2
(9.31)

The frequency resolution �ω is determined by the length of the sampling period 2P. The
highest frequency that we resolve from the sampled data is

ωmax =
(

N

2

)
�ω = Nπ

2P
= π

(2P/N)
= π

�t
(9.32)

To resolve higher frequencies, we need to sample f (t) more often (decrease�t). If F(ω) = 0
for all |ω| > ωmax, f (t) is said to be bandwidth-limited, and the sampled data are sufficient to
characterize F(ω). Otherwise, if F(ω) �= 0 for some |ω| > ωmax, there exist high-frequency
components of f (t) that are sampled incorrectly and that can corrupt the values of f (ωm).
This is known as aliasing, a subject that we discuss later in more detail.
To obtain the normalization constant A in (9.28), we match

+∞∫
−∞

F(ω)G(ω)dω = A
∞∑

m=−∞
F(ωm)

+∞∫
−∞

δ(ω − ωm)G(ω)dω

= A
∞∑

m=−∞
F(ωm)G(ωm) (9.33)

to the quadrature formula
+∞∫
−∞

F(ω)G(ω)dω ≈
∞∑

m=−∞
F(ωm)G(ωm)(�ω) (9.34)

to yield

A = �ω = π

P
(9.35)

From (9.17) and (9.29), we have

(�ω)√
2π

F(ωm) = cm = 1

2P

2P∫
0

f (t)e−iωm t dt (9.36)

Using

(
√

2π)

2P

1

(�ω)
= (

√
2π)

2P

P

π
= 1√

2π

the Fourier transform values are

F(ωm) = 1√
2π

2P∫
0

f (t)e−iωm t dt (9.37)

442 9 Fourier analysis

Applying quadrature, we write (9.37) as

F(ωm) ≈ 1√
2π

N∑
k=1

f (tk)e−iωm tk (�t) = (�t)√
2π

N∑
k=1

fke−im(�ω)(k−1)(�t) (9.38)

We next show that the F(ωm) values have ω-periodicity,

F(ωm + l2ωmax) = F(ωm) l = 0,±1,±2, . . . (9.39)

Using (9.31) and (9.32),

ωm + l2ωmax = m(�ω)+ l2

(
N

2

)
(�ω) = [m + l N](�ω) (9.40)

We next use (9.38) and ea+b = eaeb to obtain

F(ωm + l2ωmax) = (�t)√
2π

N∑
k=1

fke−im(�ω)(k−1)(�t)e−il N (�ω)(k−1)(�t) (9.41)

Now, as

(�ω)(�t) =
(π

P

)(
2P

N

)
= 2π

N

we have

e−il N (�ω)(k−1)(�t) = e−il N (k−1)(2π/N) = e−i(l2π)(k−1) (9.42)

Using eab = (ea)b, this becomes

e−i(l2π)(k−1) =
[
e−i(l2π)

](k−1)
= [cos(−l2π)+ i sin (−l2π)](k−1) = 1 (9.43)

Therefore, we have ω-periodicity,

F(ωm + l2ωmax) = (�t)√
2π

N∑
k=1

fke−im(�ω)(k−1)(�t) = F(ωm) (9.44)

Rather than evaluating F(ω) at the frequencies ωm = m(�ω) in (−ωmax, ωmax), we thus
could instead evaluate F(ω) at ωn = (n − 1)(�ω) in [0, 2ωmax), and then obtain the values
at “negative” frequencies using F(ωn − 2ωmax) = F(ωn). We then have

F(ωn) ≈ (�t)√
2π

N∑
k=1

fke−i(n−1)(�ω)(k−1)(�t) ωn = (n − 1)π

P
(9.45)

Again using eab = (ea)b,

F(ωn) ≈ (�t)√
2π

N∑
k=1

fk

[
e−i(�ω)(�t)

](n−1)(k−1)
(9.46)

As (�ω)(�t) = 2π/N , we have e−i(�ω)(�t) = e−i2π/N ≡ W and thus

F(ωn) ≈ (�t)√
2π

N∑
k=1

fk W (n−1)(k−1) (9.47)

Fourier series and transforms in one dimension 443

From these results, we define the discrete Fourier transform

Fn =
N∑

k=1

fk W (n−1)(k−1) W = e−i2π/N n = 1, 2, . . . , N (9.48)

such that

F(ωn) ≈ (�t)√
2π

Fn ωn = (n − 1)π

P
(9.49)

Similarly, we approximate the inverse Fourier transform

f (t) = 1√
2π

+∞∫
−∞

F(ω)eiωt dω → 1√
2π

2ωmax∫
0

F(ω)eiωt dω (9.50)

by

f (t) ≈ 1√
2π

N∑
n=1

F(ωn)eiωn t (�ω) (9.51)

Substituting for F(ωn) and ωn, we have at tk = (k − 1)�t

f (tk) ≈
[

(�ω)√
2π

] [
(�t)√

2π

] N∑
n=1

Fnei(n−1)(�ω)(k−1)(�t) (9.52)

Using again eab = (ea)b and (�ω)(�t) = 2π/N ,

f (tk) ≈ 1

N

N∑
n=1

Fn

[
ei(�ω)(�t)

](n−1)(k−1)
= 1

N

N∑
n=1

Fn[W ∗](n−1)(k−1) (9.53)

where W ∗ = [e−i2π/N]∗ = ei2π/N = ei(�ω)(�t). These relations define the discrete Fourier
transform pair

Fn =
N∑

k=1

fk W (n−1)(k−1) fk = 1

N

N∑
n=1

Fn[W ∗](n−1)(k−1)

(9.54)
W = e−i2π/N n = 1, 2, . . . , N

that is related to the original, continuous Fourier transform pair by

F(ωn) ≈ (�t)√
2π

Fn ωn = (n − 1)π

P
f (tk) = fk tk = (k − 1)�t (9.55)

The fast Fourier transform (FFT)

Computing the discrete Fourier transform directly from (9.48) requires a number of oper-
ations that scales as N 2. Here, we present an alternative decimation procedure that scales
only as N log2 N « N 2. Let us break the summation over k into contributions from the even
and odd terms,

Fn =
N∑

k=1
k even

fk W (n−1)(k−1) +
N∑

k=1
k odd

fk W (n−1)(k−1) (9.56)

444 9 Fourier analysis

Let us extract the even and odd fk as

f (e)
l = fk=2l f (o)

l = fk=2l−1 l = 1, 2, . . . , N/2 (9.57)

such that (9.56) becomes

Fn =
N/2∑
l=1

f (e)
l W (n−1)(2l−1) +

N/2∑
l=1

f (o)
l W (n−1)(2l−2) (9.58)

Using the relations for the even and odd contributions respectively,

W (n−1)(2l−1) = W (n−1) (W 2)(n−1)(l−1) W (n−1)(2l−2) = (W 2)(n−1)(l−1) (9.59)

where W 2 = [e−i(�ω)(�t)]2 = e−i(�ω)(2�t), (9.58) becomes

Fn = W (n−1)
N/2∑
l=1

f (e)
l (W 2)(n−1)(l−1) +

N/2∑
l=1

f (o)
l (W 2)(n−1)(l−1) (9.60)

Comparing (9.60) to (9.48), we see that the two summations contributing to Fn themselves
are discrete Fourier transforms, but each over only half of the data sampled at an interval
2�t. If N = 2κ , then after this partition, we have two sums over 2κ−1 terms. Performing a
similar partition on each of these, we have four sums, each over only one fourth of the data.
If we recursively perform this partition κ = log2 N times, we have “sums” of only one term.
The FFT algorithm applies this decimation approach to obtain the values of all Fn after only
N log2 N « N 2 operations. The computation savings offered by FFT are so significant that
many common applications of Fourier analysis would be prohibitively expensive if FFT
were not available.

While the decimation procedure may still be applied if N is not a power of 2, the additional
book-keeping is expensive. Therefore, it is common in this case to “pad” the data set with
zeros until we obtain a total of 2κ > N points. The only change in the Fourier transform
due to this padding is that the frequencies are now

ωn = (n − 1)�ω �ω = π

P + Q
Q = (2κ − N)(�t)

2
(9.61)

2Q is the time duration of the “padding” of the signal f (t) with zeros.

Special properties of the Fourier transform of a real function and the
power spectrum

For a real function with f ∗(t) = f (t), we have the property

[F(−ω)]∗ = 1√
2π

+∞∫
−∞

f ∗(t)e+i(−ω)t dt = 1√
2π

+∞∫
−∞

f (t)e−iωt dt = F(ω) (9.62)

This holds as well for the Fourier transform computed from sampled data:

[F(−ωn)]∗ = F(ωn) (9.63)

Using F(ωm + l2ωmax) = F(ωm), the discrete Fourier transform (9.48) satisfies

F ∗
N−m = Fm (9.64)

1-D Fourier transforms in MATLAB 445

Thus, we can extract all of the independent information of the Fourier transform of a sampled
real signal f (t) from only one half of the discrete Fourier transform values, say the first
half.

Even for a real signal f (t), the Fourier transform F(ω) is complex; therefore, it is
common practice to compute the real-valued, nonnegative power spectrum |F(ω)|2 vs.
ω. The quantity |F(ω)|2 ≥ 0 is a measure of the contribution to f (t) from dynamics with
a frequency ω. The symmetry F∗

N−m = Fm leads to the property |F(2ωmax − ωn)|2 =
|F(ωn)|2, and thus all independent information in the power spectrum is contained in the
lower-frequency half 0 ≤ ω ≤ ωmax.

1-D Fourier transforms in MATLAB

The discrete Fourier transform and its inverse (9.54) are computed in MATLAB using fft and
ifft respectively. The following code demonstrates their use for the signal f (t) = sin(t)+
2 cos(2t), which has two peaks in the power spectrum at ω = 1 and ω = 2. The signal is
sampled at uniform times over the period [0, l2π], such that P = lπ and �t = 2P/N ,
where N = 2k for some integer e.

% generate sampled f(t) data
N = 2ˆ8; P = 10*pi; dt = (2*P)/N;
t val = linspace(0,2*P-dt,N);
f val = sin(t val) + 2*cos(2*t val);
% compute discrete FT
F DFT = fft(f val);
% generate sampled frequencies
omega max = pi/dt; d omega = pi/P;
omega val = linspace(0,2*omega max-d omega,N);
% compute continuous FT and power spectrum
F FT = dt/sqrt(2*pi)*F DFT; F PS = abs(F FT);
% plot signal and power spectrum
figure; subplot(2,1,1); plot(t val,f val);
xlabel(‘t’); ylabel(‘f(t)’);
title(‘f(t) and |F(\omega)|’);
subplot(2,1,2); plot(omega val,F PS);
xlabel(‘\omega’); ylabel(‘|F (\omega)|’);
Plots of the time signal f (t) and |F(ω)| are shown in Figure 9.2. There appear two peaks
at ω = 1 and ω = 2 with a 2:1 relative intensity. These peaks are repeated again at high
frequencies due to the ω-symmetry for a real signal, F∗

N−m = Fm . Thus, we obtain all the
useful information from the low-frequency half ω ∈ [0, ωmax]. From the discrete Fourier
transform, the time signal can be reconstituted from the inverse discrete FT function ifft,

f 2 = real(ifft(F DFT));

The real() operation is done to remove any near-zero imaginary contributions that are
introduced due to numerical error.

446 9 Fourier analysis

2

1 2

2

t

1 1 2 2
w

w 2

w 1

wa 12

w 2 wa 2

w 2 wa 1

t
a

2

1

w

Figure 9.2 (a) The sampled time signal f (t) and (b) the computed power spectrum from fft, f (t) =
sin(t)+ 2 cos(2 t) .

Aliasing

In the example above, the sampling interval �t was sufficiently small to observe all con-
tributing frequencies ω to F(ω). Let us now consider what happens to the discrete FT when
f (t) is not bandwidth-limited. Consider sampling the signal with N = 26 points during an
interval 2P, P = 3π . The maximum resolvable frequency is

ωmax = π

�t
= Nπ

2P
= (26)π

(2)(3π)
= 25

3
= 10.666 (9.65)

Let us now sample a signal with an added high-frequency component ωhi > ωmax,

f (t) = sin(t)+ 2 cos(2t)+ sin(ωhit) ωhi = (1.2)ωmax (9.66)

Using a procedure similar to that above, we obtain the power spectrum shown in Figure 9.3.
The peaks at ω = 1 and ω = 2 are sampled correctly; however, the peak at ωhi > ωmax

generates through the symmetry F(ωm − 2ωmax) = F(ωm) a peak at 2ωmax − ωhi < ωmax.
The true signal has no such frequency component, but our usual experience would lead us
to conclude that f (t) does contain a component at 2ωmax − ωhi and that the peak at ωhi is
the “fictitious” one due to sampling artifacts. Thus, inadequate sampling of high-frequency
components (Figure 9.4) can corrupt the low-frequency spectrum.

To guard against aliasing, we could filter the data prior to computing the Fourier transform
to remove the frequency components above ωmax. Of course, the best approach is to reduce
�t and thus increase ωmax. Increasing N from 26 to 28 for the same P increases ωmax to

ωmax = Nπ

2P
= (28)π

(2)(3π)
= 27

3
= 42.66 (9.67)

and thus removes the aliasing in the power spectrum (Figure 9.5).

Convolution and correlation 447

2

2

t

1 1 2 2
w

2wa wi wa wi wa

wa 1

t

2

w

211

Figure 9.3 Power spectrum of time signal showing aliasing due to incorrectly-sampled high-frequency
component.

2

1

1

2

1 1 2
t

tre t
saed t

t

Figure 9.4 Comparison of the “true” f (t) signal to the sampled signal showing the incorrect sampling
of the high-frequency component that leads to aliasing.

Convolution and correlation

Convolution of two signals

The convolution of two functions g(t) and f (t) is the function of t

[g∗ f](t) = 1√
2π

+∞∫
−∞

g(τ) f (t − τ)dτ (9.68)

448 9 Fourier analysis

2

2

t

2 1
w

wi

wa 2

t

2

w

211

w 2
w 1

Figure 9.5 Fourier transform of a signal with a high-frequency component shows no aliasing when
the sampling interval is sufficiently small.

Such an operation occurs often in the analysis of dynamic systems and signal processing,
when one assumes a linear relationship between the time-dependent input to a system x(t)
and the time-dependent output y(t):

y(t) =
+∞∫
−∞

x(τ)r (t − τ)dτ = [x∗r](t) (9.69)

For a causal relationship between input and output, r (t < 0) = 0.
If we were to apply numerical quadrature directly to the formula above, the required

work scales with the number of time values N as N 2. One may use FFT methods to compute
the convolution in a much smaller number of operations that scales only as N log2 N « N 2

using the convolution theorem:

[G∗F](ω) = G(ω)F(ω) (9.70)

G(ω), F(ω), and [G∗F](ω) are the Fourier transforms respectively of g(t), f (t), and
[g∗ f](t).

Proof The Fourier transform of the convolution is

[G∗F](ω) = 1√
2π

+∞∫
−∞

 1√

2π

+∞∫
−∞

g(τ) f (t − τ)dτ

 e−iωt dt (9.71)

Changing the order of integration,

[G∗F](ω) = 1√
2π

+∞∫
−∞

g(τ)

 1√

2π

+∞∫
−∞

f (t − τ)e−iωt dt

 dτ (9.72)

Convolution and correlation 449

Introducing the change of variable t → s = t − τ, e−iωt = e−iωs e−iωτ , dt = ds,

[G∗F](ω) = 1√
2π

+∞∫
−∞

g(τ)

 1√

2π

+∞∫
−∞

f (s)e−iωs ds

 e−iωτ dτ

[G∗F](ω) =

 1√

2π

+∞∫
−∞

f (s)e−iωs ds

 1√

2π

+∞∫
−∞

g(τ)e−iωτ dτ

[G∗F](ω) = G(ω)F(ω) (9.73)

QED

Correlation of two signals

A similar operation to convolution is the correlation of two functions,

Cg, f (t) = 1√
2π

+∞∫
−∞

g(τ + t) f (τ)dτ (9.74)

which measures how similar the signal g is to the signal f after a lag time t. The autocor-
relation of a signal g is its correlation to itself, Cg,g(t). Like convolution, the correlation
of two signals can be computed efficiently by FFT methods. The Fourier transform of the
correlation function is

Cg, f (ω) = 1√
2π

+∞∫
−∞

Cg, f (t)e−iωt dt (9.75)

Substituting for Cg, f (t) and switching the integration order, we have

Cg, f (ω) = 1√
2π

+∞∫
−∞

 1√

2π

+∞∫
−∞

g(τ + t) f (τ)e−iωt dt

 dτ (9.76)

Defining s = τ + t , we can write dt = ds in the inner integral, where τ is fixed, and using
e−iωt = e−iω(s−τ) = e−iωs eiωτ, we have

Cg, f (ω) = 1√
2π

+∞∫
−∞

 1√

2π

+∞∫
−∞

g(s) f (τ)e−iωs ds

 eiωτ dτ (9.77)

Thus,

Cg, f (ω) =

 1√

2π

+∞∫
−∞

g(s)e−iωs ds

 1√

2π

+∞∫
−∞

f (τ)eiωτ dτ

 (9.78)

and we have the simple result

Cg, f (ω) = G(ω)F(−ω) (9.79)

450 9 Fourier analysis

If f is a real signal, [F(ω)]∗ = F(−ω), and thus

Cg, f (ω) = G(ω)F(−ω) = G(ω)[F(ω)]∗ for real functions (9.80)

Fourier transforms in multiple dimensions

The d-dimensional Fourier transform pair satisfies the relation

f (r) = 1

(2π)d

∫
�d

∫
�d

f (r ′)e−i(q·r ′) dr ′

 ei(q·r) dq (9.81)

and, in agreement with the result for d = 1, (9.23) is defined as

F(q) = 1

(2π)d/2

∫
�d

f (r)e−i(q·r) dr f (r) = 1

(2π)d/2

∫
�d

F(q)ei(q·r) dq (9.82)

As in one dimension, alternative definitions of the Fourier transform exist, but as long as
one is consistent and satisfies (9.81), the choice is rather arbitrary.

Convolution and correlation

The convolution of f (r), g(r), r ∈ �d , is

[g∗ f](s) = 1

(2π)d/2

∫
�d

g(r) f (s − r)dr [G∗F](q) = G(q)F(q) (9.83)

The correlation of f (r) and g(r) is

Cg, f (s) = 1

(2π)d/2

∫
�d

g(r + s) f (r)dr Cg, f (q) = G(q)F(−q) (9.84)

When f (r) and g(r) are real, Cg, f (q) = G(q)F(−q) = G(q)[F(q)]∗.

The discrete d-dimensional Fourier transform

The FFT algorithm is similar in multiple dimensions d > 2 to the case d = 1. Here, we
consider d = 2:

F(q) = 1

(2π)

∫
�2

f (r)e−i(q·r) dr = 1

(2π)

+∞∫
−∞

+∞∫
−∞

f (x, y)e−i(qx x+qy y) dxdy (9.85)

We sample f (x, y) uniformly in 0 ≤ x < 2Px and 0 ≤ y < 2Py at

x j = (j − 1)(�x) �x = (2Px)/Nx j = 1, 2, . . . , Nx

yk = (k − 1)(�y) �y = (2Py)/Ny k = 1, 2, . . . , Ny

(9.86)

Nx = 2κx and Ny = 2κy .

Fourier transforms in multiple dimensions 451

We assume periodicity outside of the domain,

f (x + lx 2Px , y + ly2Py) = f (x, y) lx,y = 0,±1,±2, . . . (9.87)

and thus determine F (q) at q [m,n], where m = 1, 2, . . . , Nx , n = 1, 2, . . . , Ny :

q [m,n] = q [m]
x ex + q [n]

y ey q [m]
x = (m − 1)π

Px
q [n]

y = (n − 1)π

Py
(9.88)

The maximum resolvable frequencies and the frequency resolutions are

q j,max = N jπ

2Pj
= N j

2
(�q j) �q j = π

Pj
j = x, y (9.89)

The computed F(q [m,n]) have q-periodicity,

F(qx + lx 2qx,max, qy + ly2qy,max) = F(qx , qy) lx,y = 0,±1,±2, . . . (9.90)

The F(q [m,n]) are obtained by quadrature of (9.85),

F(q [m,n]) ≈ (�x)(�y)

(2π)

Nx∑
j=1

Ny∑
k=1

f (x j , yk)e−i
[

q [m]
x x j+q [n]

y yk

]
(9.91)

In terms of the 2-D discrete Fourier transform values Fmn, this becomes

F
(

q [m,n]
)
≈ (�x)(�y)

(2π)
Fmn Fmn =

Nx∑
j=1

Ny∑
k=1

f jke−i
[

q [m]
x x j+q [n]

y yk

]
(9.92)

Defining Wx = e−i(�qx)(�x), Wy = e−i(�qy)(�y), we have

Fmn =
Nx∑
j=1

{
Ny∑

k=1

f jk W (n−1)(k−1)
y

}
W (m−1)(j−1)

x (9.93)

Thus, we obtain the 2-D discrete Fourier transform by first computing the 1-D discrete
Fourier transforms over y with x fixed at each xj,

Fk(x j) =
Ny∑

k=1

f (x j , yk)W (n−1)(k−1)
y (9.94)

and then performing a 1-D discrete Fourier transform over x,

Fmn =
Nx∑
j=1

Fk(x j)W
(m−1)(j−1)
x (9.95)

Thus, multidimensional discrete Fourier transforms can be obtained from recursive appli-
cation of the 1-D FFT algorithm.

FFT in multiple dimensions in MATLAB

In MATLAB, the multidimensional discrete Fourier transform and its inverse are computed
using the definitions above by fftn and ifftn respectively. A separate routine fft2 is provided
for the 2-D case. The code provided below computes the 2-D power spectrum of the function

f (x, y) = cos(x)+ cos(3x)+ 2 sin(x) cos(2y)+ cos(4y) (9.96)

452 9 Fourier analysis

1

11
1

1
−

1 2

2
1

−1

−2

−
12

Figure 9.6 Surface and contour plots of a 2-D periodic function f (x, y).

that has four peaks at (qx , qy) = (1, 0), (3, 0), (1, 2), and (0, 4) from sampling over the
domain 0 ≤ x < 4π, 0 ≤ y < 4π ,

% generate real-space (x,y) grid
P x = 2*pi; N x = 2ˆ6; dx = 2*P x/N x;
x val = linspace(0, 2*P x - dx, N x);
P y = 2*pi; N y = 2ˆ6; dy = 2*P y/N y;
y val = linspace(0, 2*P y - dy, N y);
[X,Y] = meshgrid(x val,y val);
% generate f(x,y) values
F = zeros(size(X));
F = F + cos(X) + cos(3.*X) + 2*sin(X).*cos(2.*Y) + cos(4.*Y);
% generate the q-space grid
dq x = pi/P x; q x max = pi/dx;
q x val = linspace(0, 2*q x max - dq x, N x);
dq y = pi/P y; q y max = pi/dy;
q y val = linspace(0, 2*q y max - dq y, N y);
[QX,QY] = meshgrid(q x val, q y val);
% compute the 2-D FT and power spectrum
F FT = (dx*dy/2/pi).*fft2(F); F PS = abs(F FT);

Plots of f (x, y) and |F(qx , qy)| are shown in Figure 9.6 and Figure 9.7.

Scattering theory

This section introduces the theory underpinning scattering experiments, which provide
structural information about materials from observing the interaction of a sample with

Scattering theory 453

2

1

2

1

1 2

 1 2

 1

2
1 2

1

Figure 9.7 Power spectrum of f (x, y) obtained from a 2-D FFT.

e−

incident wave
| ki | = 2π λ

ki

ks

| ks | = | ki |
scattered

wave

λ

θ

Figure 9.8 Generation of scattered light/X-ray radiation from an electron.

a light, X-ray, or neutron beam. In light and X-ray scattering, an incident beam of
electromagnetic radiation causes the electrons of the sample to oscillate and emit sec-
ondary “scattered” electromagnetic waves, each with the same frequency as the incident
beam. The intensity of this scattered radiation is measured as a function of orientation from
the incident beam. From the observed interference pattern, the relative spatial positions of
the electrons are extracted through Fourier analysis. In neutron scattering, the mechanism
for scattering is different, but the mathematical treatment is the same.

Consider a system in which an incident electromagnetic wave interacts with a single
electron (Figure 9.8). The wavelength is λ and its speed of propagation is c; thus, the
frequency in radians per second is ω = 2πc/λ. The incident electromagnetic wave imparts
a force to the electron and causes it to oscillate at the same frequency ω as the incident
radiation. As an accelerating charge emits its own electromagnetic wave, there arise waves
of scattered radiation from each electron, each at the same frequency ω as the incident
radiation, but propagating in all directions from the electron (although not uniformly – the
intensity varies as 1+ cos2 θ).

454 9 Fourier analysis

1

2

A2

B1A1

B2

R21 = R2 – R1
incident
wave

scattered
wave

E2(r, t)

scattered
wave

E1(r, t)

ki

ks

ks

ki

Figure 9.9 Interference diagram for the scattered waves of two electrons.

For the incident beam, the wave vector ki points in the direction of wave propagation
and has a magnitude equal to the wavenumber

|ki| = ω

c
= 2π

λ
(9.97)

As the scattered radiation has the same frequency (and thus wavelength) as the incident
radiation, |ks| = |ki|. We define the scattering vector q as

q = ks − ki (9.98)

which is related to the angle θ between the incident and scattered waves by

|q| = 4π sin (θ/2)

λ
(9.99)

In a scattering experiment, we measure the time-averaged intensity of scattered radi-
ation as a function of q �= 0 with a detector located at a distance rD » λ from the
sample. q is varied by rotating the sample and/or detector with respect to the incident
beam.

This scattered intensity (except at q = 0 none of the detected intensity is due to the
incident beam) arises from interactions involving a large number of electrons in the sample
and in the intervening atmosphere. This latter source is removed by subtracting from the
measured intensity the background intensity observed when there is no sample. It is the
interference between the scattered waves from each electron in the sample that encodes
information about their relative spatial positions.

Let us consider first the interference between the scattered waves coming from only
two electrons (Figure 9.9), one at R1 and the second at R2. When the distance between the
sample and the detector is much greater than the physical extent of the sample, both scattered
waves have the same wavevector ks = ki + q . The interference, dependent upon the relative
position of the electrons R21 = R2 − R1, originates from the different path lengths traveled
by the two waves from the incident beam source to the detector; specifically the difference

Scattering theory 455

between the segment lengths

A1 B1 = −1

k
(ki · R21) A2 B2 = −1

k
(ks · R21) k = |ki| = |ks| (9.100)

If Es(θ) is the common amplitude of the two scattered waves (we neglect any polarization
effects), the scattered electric fields emitted from each electron vary as a function of position
and time as

E1(r , t ; q) = Es(θ)ei(ks· r−ωt) E2(r , t ; q) = Es(θ)ei(ks· r−ωt+ϕ21) (9.101)

where ϕ21 is the phase lag due to the path-length difference A2 B2 − A1 B1,

ϕ21 = (A2 B2 − A1 B1)

λ
(2π) = k(A2 B2 − A1 B1) (9.102)

Substituting for the path lengths,

ϕ21 = k

(
−1

k

)
[(ks · R21)− (ki · R21)] = −[(ks − ki) · R21] = −(q · R21) (9.103)

The total electric field from both scattered waves is

Etot(r , t ; q) = E1(r , t ; q)+ E2(r , t ; q) = Es(θ)ei(ks·r−ωt) [1+ eiϕ21] (9.104)

Thus, the net intensity from the two scattered waves at the detector is

Itot(rD, t ; q) = |Etot(r , t ; q)|2 = 2|Es(θ)|2[1+ cos ϕ21] (9.105)

In the decoherent limit q → 0, ϕ21 → 0, there is no interference between the waves, and
the time-averaged intensity at the detector is

[Itot(q)]decoh = Itot(q → 0) = 4|Es(θ)|2 (9.106)

Thus, the structure factor – the ratio of the observed scattered intensity to that in the
decoherent limit – for this two-electron system is

S(q) = 〈Itot(q)〉
〈Itot(q → 0)〉 =

1

2
[1+ cos ϕ21] = 1

2
{1+ cos[−(q · R21)]} (9.107)

From S(q), we obtain information about the relative electron position R21.
We now extend this analysis to the case with N scattered waves emitted from electrons at

the positions {R1, R2, . . . , RN }. The phase angle ϕj of the scattered wave at q from electron
j is

ϕ j = −(q · R j) (9.108)

and the phase lag between electrons j and m is

ϕmj = ϕm − ϕ j = −(q · Rmj) Rmj = Rm − R j (9.109)

Thus, the electric field at the detector arising from all N scattered waves is

Etot
(
rD, t ; q

) = Es(θ)ei(ks · r−ωt)
N∑

j=1

eiϕ j (9.110)

We assume that the sample is so small, or the interaction is so weak, that the scattered waves

456 9 Fourier analysis

are not themselves scattered before they strike the detector. The measured intensity is then

Itot
(
rD, t ; q

) = ∣∣Etot
(
rD, t ; q

)∣∣2 = |Es(θ)|2
[

N∑
j=1

e−iϕ j

][
N∑

m=1

eiϕm

]

= |Es(θ)|2
N∑

j=1

N∑
m=1

ei(ϕm−ϕ j) = |Es(θ)|2
N∑

j=1

N∑
m=1

e−i(q·Rmj) (9.111)

The structure factor – the ratio of time-averaged scattered intensity at q �= 0 to that in the
decoherent limit q → 0 – is therefore

S(q) = 〈Itot(q)〉
〈Itot(q → 0)〉 =

〈
1

N

N∑
j=1

N∑
m=1

e−i(q·Rmj)

〉
(9.112)

Applying Fourier analysis

We now show that this structure factor is closely related to the Fourier transform of the corre-
lation function of the electron density ρ(r). If we know the exact positions {R1, R2, . . . , RN }
of each electron (we neglect quantum effects), the density function is merely a sum of Dirac
delta functions:

ρ(r) =
N∑

j=1

δ(r − R j) (9.113)

Let us consider the autocorrelation function of ρ(r),

Cρ,ρ(s) = 1

(2π)d/2

∫
�d

ρ(r + s)ρ(r)dr

(9.114)
Cρ,ρ(q) = ρ(q)ρ(−q) = |ρ(q)|2 = 1

(2π)d/2

∫
�d

Cρ,ρ(s)e−i(q·s)ds

Substituting for Cρ,ρ(s) and ρ(r) in the expression for Cρ,ρ(q),

Cρ,ρ(q) = 1

(2π)d

∫
�d

∫
�d

ρ(r + s)ρ(r)e−i(q·s)drds

= 1

(2π)d

∫
�d

∫
�d

[
N∑

m=1

δ(r + s − Rm)

][
N∑

j=1

δ(r − R j)

]
e−i(q·s)drds

= 1

(2π)d

N∑
m=1

N∑
j=1

∫
�d

∫
�d

δ(r + s − Rm)δ(r − R j)e
−i(q·s)drds

(9.115)

From the Dirac delta functions, the integral is nonzero only if

r = R j r + s = Rm ⇒ s = Rm − R j = Rmj (9.116)

Scattering theory 457

therefore,

Cρ,ρ(q) = 1

(2π)d

N∑
j=1

N∑
m=1

e−i(q·Rmj) (9.117)

The structure factor thus is related to the time-averaged autocorrelation function of the
electron density:

〈Cρ,ρ(q)〉 = 1

(2π)d

〈
N∑

j=1

N∑
m=1

e−i(q·Rmj)

〉
= N S(q)

(2π)d
= |〈ρ(q)〉|2 (9.118)

The autocorrelation function is obtained from an inverse Fourier transform:

〈Cρ,ρ(s)〉 = 1

(2π)d/2

∫
�d

〈ρ(r + s)ρ(r)〉dr = 1

(2π)d/2

∫
�d

[
N S(q)

(2π)d

]
ei(q·s)dq (9.119)

Scattering peaks from samples with periodic structure

When 〈Cρ,ρ(s)〉 has a peak at a particular s′, it means that when we have an electron at
r′, we tend to have another electron at r ′ + s ′. For example, let us consider the case of a
periodic lattice (e.g. a crystal) with lattice vectors a, b, c such that

〈ρ(r + l1a + l2b + l3c)〉 = 〈ρ(r)〉 lm = 0,±1,±2, . . . (9.120)

〈Cρ,ρ(s)〉 then has intense peaks at every s = l1a + l2b + l3c, as can be seen by par-
titioning the sample volume into unit cells �α, α = 1, 2, . . . , Ncells, each of volume
|a · (b × c)|:

〈Cρ,ρ(l1a + l2b + l3c)〉 = 1

(2π)d/2

Ncells∑
α=1

∫
�α

〈ρ(r + l1a + l2b + l3c)ρ(r)〉dr

= Ncells

(2π)d/2

∫
�α

〈ρ(r)ρ(r)〉 dr (9.121)

This periodicity 〈ρ(r + l1a + l2b + l3c)〉 = 〈ρ(r)〉 also yields peaks of S(q) and 〈Cρ,ρ(q)〉
in q-space. Let us assume that 〈Cρ,ρ(s)〉 consists of infinitely-narrow peaks about each
l1a + l2b + l3c:

〈Cρ,ρ(s)〉 = n0

∑
l1,l2,l3

δ[s − (l1a + l2b + l3c)] (9.122)

In practice, peaks have finite widths, but, assuming this “sharp-peak” limit, the Fourier
transform of the autocorrelation function is

〈Cρ,ρ(q)〉 = 1

(2π)d/2

∫
�d

{
n0

∑
l1,l2,l3

δ[s − (l1a + l2b + l3c)]

}
e−i(q·s)ds

= n0

(2π)d/2

∑
l1,l2,l3

e−i[q·(l1a+l2b+l3c)] (9.123)

458 9 Fourier analysis

Now, if q ′ · (l1a + l2b + l3c) = m2π, m = ±1,±2, . . . , then

〈Cρ,ρ(q ′)〉 = n0

(2π)d/2

∑
l1,l2,l3

e−im2π = n0

(2π)d/2

∑
l1,l2,l3

(1) = n0 Ncells

(2π)d/2
(9.124)

Thus, 〈Cρ,ρ(q)〉 has sharp peaks at all q ′ such that q ′ · (l1a + l2b + l3c) is a multiple of
2π . If we define the reciprocal lattice vectors α, β, γ to satisfy

α · a = 2π α · b = 0 α · c = 0
β · a = 0 β · b = 2π β · c = 0
γ · a = 0 γ · b = 0 γ · c = 2π

(9.125)

these peaks occur in q-space at

q ′ = n1α+ n2β + n3γ (9.126)

since

q ′ · (l1a + l2b + l3c) = (n1α+ n2β + n3γ) · (l1a + l2b + l3c)
= (n1 l1 + n2 l2 + n3l3)(2π) (9.127)

Above, we have assumed that the periodicity ρ(r + l1a + l2b + l3c) = ρ(r) extends
throughout the entire sample; however, often (unless we go to great lengths to anneal
the sample or crystallize it slowly from a single nucleation site) the sample contains many
different crystal domains, with the crystal lattices in each domain isotropically oriented at
random. In such a case, we measure a powder spectrum, and obtain not the full structure
factor S(q) but rather merely an isotropically-averaged structure factor S(q). When S(q) is
nonzero (it usually appears as a circular “halo” at some scattering angle θ), this signifies
that the material has structural periodicity on a length scale

σlen ≈ 2π

q
(9.128)

Smaller q-values denote structures on larger length scales. Hence, when X-ray scattering
(for a Cu-Kα1 source, λ is 1.54 Å) is used to measure the ångstrom-scale periodicity of
crystals, we measure S(q) at large values of q, and thus also at large scattering angles θ

(Figure 9.10). By contrast, when we attempt to probe longer nanometer-scale O(10−9 m)
structure, we must measure the scattering at small angles. Thus, when X-ray scattering is
performed to probe the atomic-scale structure of crystals, it is known as WAXS (wide angle
X-ray scattering). When it is used to probe the structure on the order of tens of nanometers
of materials such as self-assembled block copolymers and micellar emulsions, it is known
as SAXS (small angle X-ray scattering). At very small θ , the scattered intensity is buried
within the intensity of the incident beam, resulting in an effective upper limit of resolution
for SAXS of O(100 nm). With special facilities, this technique can be extended to longer
length scales, as at the USAXS (ultra small angle X-ray scattering) facility at Argonne
National Laboratories.

Problems 459

2

AA

s e
n

 n

1 1

2

1

1 1

1

1 1

1 2
q derees

q derees

 n
1

Figure 9.10 Scattering angle dependence for a typical Cu X-ray source. Large (1–10 nm) scale
structure is observed at small scattering angles (SAXS) and small (0.1 nm) atomic-scale structure is
observed at large angles (WAXS).

MATLAB summary

The discrete Fourier transform and its inverse are implemented as fft and ifft. In N dimen-
sions, the routines are fftn and ifftn. In two dimensions, fft2 and ifft2 should be used. The
examples in this chapter demonstrate the use of these functions. To compute convolutions
and correlations, multiply the Fourier transforms appropriately.

Problems

9.A.1. Compute in MATLAB the Fourier transform of f (t) = cos (2t)+ 3 sin (t)−
0.5 sin (3t) from sampled data in [0, 9] at uniform intervals of no greater than 0.1.

9.A.2. Compute in MATLAB the correlation and convolution functions of the signal f (t)
from problem 9.A.1 with g(t) = cos (2t + 1)− 2 sin (t − 0.5).

9.A.3. Assume that you have been given sampled data of the signal f (t) of problem 9.A.1.
You identify that it has a component at ω = 1 that you wish to remove. Using Fourier
techniques, filter out this component and plot the remaining signal. Compare your result to
cos (2t)− 0.5 sin (3t).

9.B.1. Let x(t) be the position of an object of mass m, connected by a spring to the origin,
that experiences a drag force and is acted upon by an external force F(t). The equation of
motion is

m
d2x

dt2
= −K x − ζ

dx

dt
+ F(t) (9.129)

460 9 Fourier analysis

Let the Fourier transforms of x(t) and F(t) be X (ω) and F(ω) respectively. Relate the two
through a convolution, X (ω) = R(ω)F(ω). At what frequency ωc does R(ω) become very
large, exhibiting resonance? What effect does ζ have on the resonance phenomenon? Hint:
Relate first the Fourier transforms of derivatives of x(t) to that of x(t) itself.

9.B.2. For m = 1, K = 1, and ζ = 10κ , κ = 2, 1, 0,−1,−2,−3, plot the response x(t)
to F(t) = cos(ωt) for ω/ωc = 1± 10κ, κ = −1,−2,−3.

9.B.3. Let us say that we wish to measure some signal x(t) by a device whose output d(t)
is related to the signal by the convolution D(ω) = R(ω)F(ω). For a device that is only
sensitive near ωdev,

R(ω) = r0exp

[
− (|ω| − ωdev)2

2σ 2

]
(9.130)

For r0 = 1, ωdev = 5, σ = 1, compute the output signals for input pulsed calibration
signals,

c(t) =
{

1, 0 ≤ t ≤ tpulse

0, otherwise
(9.131)

with tpulse = 0.01, 0.1, 0.5, 1. Then, let us say that we did not know the device response
function but rather only the results of these calibration experiments. For each calibration
experiment, estimate R(ω).

9.C.1. In problem 9.B.3, we estimate R(ω) separately from the results of each calibra-
tion experiment. Propose a method that uses all of the data to generate the best estimate
of R(ω).

References

Abdel-Khalik, S. I., Hassager, O., and Bird, R. B., 1974, Polym. Eng. Sci., 14, 859–867
Akin, J. E., 1994, Finite Elements for Analysis and Design. San Diego: Academic Press
Allen, E. C. and Beers, K. J., 2005, Polymer, 46, 569–573
Arnold, V. I., 1989, Mathematical Methods of Classical Mechanics, second edition. New

York: Springer
Ascher, U. M. and Petzold, L. R., 1998, Computer Methods for Ordinary Differential Equa-

tions and Differential-Algebraic Equations. Philadelphia: SIAM
Atkins, P. W. and Friedman, R. S., 1999, Molecular Quantum Mechanics, third edition. New

York: Oxford University Press
Ballenger, T. F., et al., 1971, Trans. Soc. Rheol., 15, 195–215
Beers, K. J. and Ray, W. H., 2001, J. Applied Polym. Sci., 79, 266–274
Bellman, R., 1957, Dynamic Programming. Princeton: Princeton University Press
Bernardo, J. M. and Smith, A. F. M., 2000, Bayesian Theory. Chichester: John Wiley &

Sons Ltd
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 2002, Transport Phenomena, second

edition. New York: Wiley
Bolstad, W. M., 2004, Introduction to Bayesian Statistics. Hoboken: Wiley
Box, G. E. P. and Tiao, G. C., 1973, Bayesian Interference in Statistical Analysis. New York:

Wiley
Broyden, C. G., 1965, Math. Comput., 19, 577–593
Chaikin, P. M. and Lubensky, T. C., 2000, Principles of Condensed Matter Physics.

Cambridge: Cambridge University Press
Chandler, D., 1987, Introduction to Modern Statistical Mechanics. New York: Oxford Uni-

versity Press
Chen, M. H., Shao, Q. M., and Ibrahim, J. G., 2000. Monte Carlo Methods in Bayesian

Computation. New York: Springer
Cussler, E. L. and Varma, A., 1997, Diffusion : Mass Transfer in Fluid Systems. Cambridge:

Cambridge University Press
Dean, T., Allen, J., and Aloimonos, Y., 1995, Artificial Intelligence: Theory and Practice.

Redwood City: Benjamin-Cummings
Deen, W. M., 1998, Analysis of Transport Phenomena. New York: Oxford University Press
de Finetti, B., 1970, Theory of Probability, new English edition (1990). Chichester: Wiley
Dotson, N. A., Galván, R., Laurence, R. L., and Tirrell, M., 1996, Polymerization Process

Modeling. New York: VCH

461

462 References

Ferziger, J. H. and Peric, M., 2001, Computational Methods for Fluid Dynamics, third
edition. Berlin: Springer

Finlayson, B. A., 1992, Numerical Methods for Problems with Moving Fronts. Seattle:
Ravenna Park

Flory, P. F., 1953, Principles of Polymer Chemistry. Ithaca: Cornell University Press
Fogler, H. S., 1999, Elements of Chemical Reaction Engineering, third edition. Upper Saddle

River: Prentice-Hall
Frenkel D. and Smit B., 2002, Understanding Molecular Simulation, second edition. San

Diego: Academic Press
Golub, G. H. and van Loan, C. F., 1996, Matrix Computations, third edition. Baltimore:

Johns Hopkins University Press
Gosset, W. S., 1908, Biometrika, 6, 1–25
Jeffreys, H., 1961, Theory of Probability, third edition. Oxford: Oxford University Press
Kennedy, J. and Eberhart, R., 1995, Proc. IEEE Intl. Conf. on Neural Networks, Perth,

Australia. Piscataway: Institute of Electrical and Electronics Engineers
Kloeden, P. E. and Platen, E., 2000, Numerical Solution of Stochastic Differential Equations.

Berlin: Springer
Leach, A. R., 2001, Molecular Modelling: Principles and Applications, second edition.

Harlow: Prentice-Hall
Leonard, T. and Hsu, J. S. J., 2001, Bayesian Methods. Cambridge: Cambridge University

Press
Macosko, C. W. and Miller, D. R., 1976, Macromolecules, 9, 199–206
Naylor, A. W. and Sell, G. R., 1982, Linear Operator Theory In Engineering and Science,

second edition. New York: Springer-Verlag
Nocedal, J. and Wright, S. J., 1999, Numerical Optimization. New York: Springer
Odian, G., 1991, Principles of Polymerization, third edition. New York: Wiley
Oran, E. S. and Boris, J. P., 2001, Numerical Simulation of Reactive Flow, second edition.

Cambridge: Cambridge University Press
O’Rourke, J., 1993, Computational Geometry in C. Cambridge: Cambridge University Press
Öttinger, H. C., 1996, Stochastic Processes in Polymeric Fluids. Berlin: Springer-Verlag
Perry and Green, 1984, Chemical Engineer’s Handbook, sixth edition. New York: McGraw-

Hill
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical

Recipes in C, second edition. Cambridge: Cambridge University Press
Quateroni, A., Sacco, R., and Saleri, F., 2000, Numerical Mathematics. New York:

Springer
Ray, W. H., 1972, J. Macromol. Sci.-Revs. Macromol. Chem., C8, 1–56
Reklaitis, G. V., 1983, Introduction to Mass and Energy Balances. New York: Wiley
Robert, C., 2001, The Bayesian Choice, second edition. New York: Springer
Sontag, E. D., 1990, Mathematical Control Theory : Deterministic Finite Dimensional

Systems. New York: Springer-Verlag
Stakgold, I., 1979, Green’s Functions and Boundary Value Problems. New York: Wiley
Stoer, J. and Bulirsch, R., 1993, Introduction to Numerical Analysis, second edition. New

York: Springer

References 463

Stokes, R. J. and Evans, D. F., 1997, Fundamentals of Interfacial Engineering. New York:
Wiley-VCH

Strang, G., 2003, Introduction to Linear Algebra, third edition. Wellesley: Wellesley Cam-
bridge Press

Trottenberg, U., Oosterlee, C. W., and Schuller, A., 2000, Multigrid. San Diego: Academic
Press

Villadsen, J. and Michelsen, M. L., 1978, Solution of Differential Equation Models by
Polynomial Approximation. Engleword Cliffs: Prentice-Hall

Wilmott, P., 2000, Quantitative Finance. Chichester: Wiley
Yasuda, K., Armstrong, R. C., and Cohen, R. E., 1981, Rheol. Acta, 20, 163–178

Index

A-conjugacy 222
Aliasing 446
Arc length continuation 203

Example. multiple steady states in a nonisothermal
CSTR 204–206

Augmented Lagrangian method 231–240
Automatic mesh generation 300–303

Delaunay tessellation (see also Delaunay
tessellation) 303

Voronoi polyhedra (see also Voronoi polyhedra)
303

Balances
constitutive equation 259
control volume 258
field 258
macroscopic 259
microscopic 259

Bayesian statistics 372–432
Bayes’ factor 427
Bayes’ theorem 321, 382–383
Bayesian Information Criterion (BIC) of Schwartz

430
Bayesian view of statistical inference 381–387
composite data sets 421–426

marginal posterior for model parameters
422

Credible (Confidence) Interval (CI) 397
approximate analytical CI for single-response

data 395–399; for model parameters 398; for
predicted responses 399

calculation of Highest Probability Density (HPD)
CI’s 409–411

MATLAB nlparci 401
MATLAB nlpredci 401
MATLAB norminv 397
outliers 399

design matrix
for linear regression 377
linearized for nonlinear regression 389

eigenvalue analysis; Principle Component Analysis
(PCA) 412–414

Example. comparing protein expression levels of
two bacterial strains

as linear regression problem 380–381
MCMC analysis of hypothesis 406–407
MCMC calculation of marginal posterior density

408–409

Example. fitting the kinetic parameters of a
chemical reaction

fitting kinetic parameters to rate data by
transformation to linear model 380

fitting rate constant and generating CI from
dynamic reactor data 402

fitting rate constant to multiresponse kinetic data
418–419

MCMC analysis of elementary reaction
hypothesis 411

MCMC generation of CI for rate constant from
multiresponse data 420–421

MCMC rate constant fitting and CI generation
from composite data set 422–426

Gauss-Markov conditions 384
general problem formulation 372–373
hypothesis testing 426–427

Bayes’ factor 427
probability of hypothesis being true as posterior

expectation 403
likelihood function 386, 415
Markov Chain Monte Carlo (MCMC) simulation

Metropolis-Hastings sampling 404
multiresponse data 419–421
single-response data 403–411

model parameters 372
model selection 428
multiresponse regression 414–421

definition 372
fitting by simulated annealing 417–419
likelihood function 415
marginal posterior for model parameters 415
Markov Chain Monte Carlo (MCMC) simulation

419–421; calculation of highest probability
density (HPD) CI’s 420; calculation of
marginal posterior densities 420; calculation
of posterior expectations 419

noninformative prior 415
posterior density 415
sum of squared errors matrix 412

posterior probability distribution 385
marginal posterior density 395; for

multiresponse data 415; kernel method 407;
nuisance parameter 395

multiresponse data 415
single-response data 394

predicted responses 377
predictor variables 372

464

Index 465

prior probability distribution 385
assumption of prior independence 388
criteria for selection 386–387
data translation 391
noninformative prior; defined 392; for

multiresponse data 415; for single-response
data 389

probability as statement of belief 382
probability in frequentist view 381
random measurement errors 377
response variables 372
single-response regression

approximate analytical confidence interval
395–399; for model parameters 398; for
predicted responses 399

Bayesian treatment 383–386
definition 372
estimate of highest posterior probability 386
estimate of maximum likelihood (MLE) 386
least-squares method 378–412
linear models 376; design matrix 377;

MATLAB regress 400; numerical treatment
of linear least-squares problem 379

Markov Chain Monte Carlo (MCMC) simulation
403–411; calculation of Highest Probability
Density (HPD) regions 409–411; calculation
of marginal posterior densities 407–409;
calculation of posterior expectations 404–407

MATLAB routines 399
noninformative prior 389
nonlinear least squares, numerical treatment

388–389; Levenberg-Marquardt method 389;
linearized design matrix 389; MATLAB
nlinfit 400; MATLAB nlparci 401
MATLAB nlpredci 401

sample variance 390
sum of squared errors 378

statistical decision theory 404
Student t-distribution 395–397

MATLAB tinv 397
Wishart distribution 415

Bellman function 248
Bernoulli trials 327–328
Bifurcation point

of nonlinear algebraic system 94
Binomial coefficient 330
Binomial distribution 329–330

MATLAB binocdf 330
MATLAB binofit 330
MATLAB binoinv 330
MATLAB binopdf 330
MATLAB binornd 330
MATLAB binostat 330

Black-Scholes equation 314–315, 346–347
Boltzmann distribution 337
Boundary conditions

Danckwert’s type 280
Dirichlet type 260
von Neumann type 265, 268

Boundary Value Problems (BVPs) 258–312
Black-Scholes equation 314–315
BVPs from conservation principles 258–260
Dirichlet boundary condition 260

Example. 1-D laminar flow of Newtonian fluid
47–54

Example. 1-D laminar flow of shear-thinning fluid
85–88

Example. 3-D heat transfer in a stove top element
292–294

Example. 3-D Poisson BVP 282–285
Example. chemical reaction, heat transfer, and

diffusion in a spherical catalyst pellet 265–270
Example. modeling a tubular chemical reactor with

dispersion 279–282
Example. optimal control of 1-D system 250–251
Example. solution of 2-D Poisson BVP by finite

differences 260–264
Example. solving 2-D Poisson BVP with FEM

305–309
function-space solution methods 260
Poisson equation 260

real-space solution methods 260
solution by finite differences (see also Finite

difference method) 260–263, 264, 265–267,
270, 279–282

solution by finite element method (see also Finite
element method (FEM)) 299–311

solution by finite volume method 297–299
MATLAB pdepe 294
modeling electrostatic screening 313–314
numerical issues for problems of high
dimension 282–286, 294
time-dependent simulation 282
von Neumann boundary condition 265, 268

weak solution 306
weighted residual methods (see also Weighted

residual methods) 304–305
Brownian dynamics (see also Stochastic simulation)

327
Einstein relation 352
Fluctuation Dissipation Theorem (FDT) 352
Langevin equation 340, 343
Stokes-Einstein relation 352
velocity autocorrelation function 338

Broyden’s method 77
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula

224

Cauchy point 226
Central limit theory of statistics 333
Chapman-Kolmogorov equation 349
Chemical reactor modeling

Danckwert’s boundary condition 280
effectiveness factor 269
Flory most probable chain length distribution 321
Example. chemical reaction, heat transfer, and

diffusion in a spherical catalyst pellet
265–270

Example. dynamic simulation of CSTR with two
reactions 181–183

Example. fitting enzyme kinetics to empirical data
230

Example. fitting the kinetic parameters of a
chemical reaction

fitting kinetic parameters to rate data by
transformation to linear model 380

466 Index

Chemical reactor modeling (cont.)
fitting rate constant and generating CI from

dynamic reactor data 402
fitting rate constant to multiresponse kinetic data

418–419
MCMC analysis of elementary reaction

hypothesis 411
MCMC generation of CI for rate constant from

multiresponse data 420–421
MCMC rate constant fitting and CI generation

from composite data set 422–426
Example. heterogeneous catalysis in a packed bed

reactor 199–202
Example. modeling a tubular chemical reactor with

dispersion 279–282
Example. multiple steady states in a nonisothermal

CSTR 204–206
Example. optimal steady-state design of CSTR

244–245
Example. steady-state CSTR for polycondensation

89–94
Example. steady-state CSTR with two reactions

71–72, 85, 88–89
Example. stochastic modeling of polymer chain

length distribution 318–321
Example. stochastic modeling of polymer gelation

321–325
Macosko-Miller method 322
Michaelis-Menten kinetics 58
Thiele modulus 266

Cholesky factorization 42
algorithm 43
incomplete Cholesky factorization 290
MATLAB chol 43, 57
MATLAB cholinc 291

Complementarity condition 238
Complex numbers

conjugate 3, 7
dot (inner, scalar) product 7
matrices 10
modulus 3
Euler formula 3
vectors 7

Condition number 113
MATLAB cond, condest 113

Conditional probability 321
Conjugate Gradient (CG) method 218–223,

286–287
linear algebraic systems 286–287
MATLAB pcg 223, 285
performance for quadratic cost functions

220–223
Constitutive equation 259
Continuous probability distribution 326
Control volume 258
Convolution (see Fourier analysis)
Correlation (see Fourier analysis)
Cost function 212
Covariance 336

matrix 337
Crank-Nicholson method 176
Credible (Confidence) Interval (CI) 397
Cumulative probability distribution 327

Danckwert’s boundary condition 280
Debye screening length 314
Delaunay tessellation 303

MATLAB delaunay 303
MATLAB delaunayn 303

Design matrix 377, 389
Determinant 32

as product of eigenvalues 110
expansion by minors 34
general formula 33
MATLAB det 57
numerical calculation 35, 57
properties 34–35

Diffusion Limited Aggregation (DLA) 366
Dirac delta function 339
Dirichlet boundary condition 260
Dirichlet’s theorem 436
Discrete probability distribution 325
Dispersion 279
Divergence theorem 259, 307
Divided differences 159
Dogleg method 225–227
Dot (inner, scalar) product

complex vectors 7
real vectors 5

Dynamic programming (see also Optimal control)
248–251

Dynamical systems
dynamical stability 169–174
Jacobian matrix 172
numerical simulation (see also Initial value

problems) 154–208
Quasi-Steady State Approximation 183
state vector 155
steady states 170, 174, 175, 204
stiffness 180
time-dependent PDEs 282

Effectiveness factor 269
Eigenvalue analysis 104–149

characteristic polynomial 106
characteristic value 106
characteristic vector 106
condition number 113
determinant 110
diagonalizable matrix 118
differential equation eigenvalue problem

138
dynamic stability 171, 172
eigenvalue 104, 106
eigenvector 104, 106

expansion of arbitrary vector 122
Example. quantum states of a 1-D system

137–141
Example. stability of steady states of nonlinear

dynamic system 172–175
existence and uniqueness of solutions to linear

systems 110
generalized eigenvalue problem 136
Gershgorin’s theorem 112
Hermetian matrix 119
multiplicity 110
normal mode analysis 134

Index 467

numerical calculation
demonstrated use of MATLAB routines 123–126
inverse inflation for smallest, closest eigenvalues

129
MATLAB eig 123, 149
MATLAB eigs 124, 149
power method for largest eigenvalues 128
QR method 131

orthogonal matrix 119
positive-definite matrices 122
Principle Component Analysis (PCA)

412–414
properties of general matrices 117–120
properties of normal matrices 121–123
quantum mechanics 138
real, symmetric matrix 119
relation to matrix determinant 110
relation to matrix norm 113
relation to matrix trace 110
roots of a polynomial 148
Schur decomposition 119
similar matrices 118
Singular Value Decomposition (SVD) (see also

Singular Value Decomposition) 141–148
spectral decomposition 122
spectral radius 113
unitary matrix 119

Einstein relation 352
Elliptic PDEs 278
Euler angles 150
Euler formula 3, 438
Euler integration method

backward (implicit) method 176
forward (explicit) method 177

Example problems.
1-D laminar flow of Newtonian fluid 47–54
1-D laminar flow of shear-thinning fluid 85–88
3-D heat transfer in a stove top element 292–294
3-D Poisson BVP 282–285
chemical reaction, heat transfer, and diffusion in a

spherical catalyst pellet 265–270
comparing protein expression levels of two

bacterial strains
as linear regression problem 380–381
MCMC analysis of hypothesis 406–407
MCMC calculation of marginal posterior density

408–409
dynamic simulation of CSTR with two reactions

172–175
dynamics on the 2-D circle 199
finding closest points on two ellipses 235
fitting enzyme kinetics to empirical data 230
heterogeneous catalysis in a packed bed reactor

199–202
modeling a separation system 45–46
modeling a tubular chemical reactor with dispersion

279–282
Monte Carlo simulation of 2-D Ising lattice

356–357
multiple steady states in a nonisothermal CSTR

204–206
optimal control of 1-D system 250–251
optimal steady-state design of CSTR 244–245

quantum states of a 1-D system 137–141
solution of 2-D Poisson BVP by finite differences

260–264
solving 2-D Poisson BVP with FEM 305–309
stability of steady states of nonlinear dynamic

system 172–175
steady-state CSTR for polycondensation 89–94
steady-state CSTR with two reactions 71–72, 85,

88–89
stochastic modeling of polymer chain length

distribution 318–321
stochastic modeling of polymer gelation 321–325

Expectation 322
conditional 323

Fast Fourier Transform (FFT) (see Fourier analysis)
Field 258
Field theory 358–360

Landau free energy model 358
mean-field approximation 359
Time-Dependent Ginzburg-Landau Model A

(TDGL-A) dynamics 359
Flory most probable chain length distribution 321
Fluid mechanics

Example. 1-D laminar flow of Newtonian fluid
47–54

Example. 1-D laminar flow of shear-thinning fluid
85–88

Fick’s law 259
Finite difference method

accuracy of approximations 262–263
approximation of first derivative 48, 262–263
approximation of Jacobian matrix 77
approximation of second derivative 48, 262–263
Central Difference Scheme (CDS) 271–272
complex geometries 294–297
Example. 1-D laminar flow of Newtonian fluid

47–54
Example. 1-D laminar flow of shear-thinning fluid

85–88
Example. 3-D heat transfer in a stove top element

292–294
Example. 3-D Poisson BVP 282–285
Example. chemical reaction, heat transfer, and

diffusion in a spherical catalyst pellet 265–270
Example. modeling a tubular chemical reactor with

dispersion 279–282
non Cartesian, non uniform grid 267
numerical (artifical) diffusion 274
numerical issues for problems of high dimension

282–286, 294
treatment of convection terms 270–275
treatment of von Neumann BC 268
Upwind Difference Scheme (UDS) 273–275

Finite element method (FEM) 299–311
automatic mesh generation (see also Automatic

mesh generation) 300–303
convection terms in FEM 309
Example. solving 2-D Poisson BVP with FEM

305–309
Galerkin method 304–305
MATLAB pdetool 301–303, 309–311
mesh refinement 300

468 Index

Finite element method (FEM) (cont.)
residual function 304
weight function 304
weighted residual methods (see also Weighted

residual methods) 304–305
Finite volume method 297–299
Floating Point Operation (FLOP) 18
Fokker-Planck equation 347–351

in 1-D 350
corresponding SDE 351

in multiple dimensions 353
corresponding SDE 353

spurious drift 351
Forward Kolmogorov equation 350
Fourier analysis 436–459

aliasing 446
convolution 447–449
convolution theorem 448
correlation 449–450
Dirichlet’s theorem 436
discrete Fourier transform 443
Fast Fourier Transform (FFT) 444

MATLAB fft, ifft 445–446
MATLAB fft2, ifft2, fftn, ifftn 451–452

Fourier series 436–439
Fourier Transform (FT) pair 439–446
exponential-form Fourier series 438
Gibbs oscillations 437
in 1-D 436

discrete Fourier Transform 443
Fourier Transform pair 439
MATLAB fft, ifft 445–446

in multiple dimensions 450–452
convolution 450
correlation 450
discrete Fourier Transform 451
Fourier transform pair 450
MATLAB fft2, ifft2, fftn, ifftn 451–452

periodic function 436
power spectrum 445
scattering theory (see also Scattering theory)

452–458
Functional derivative 359

Galerkin method 304–305
Gauss-Markov conditions 384
Gaussian elimination 10–23

basic algorithm 17
elementary row operation 12
fill-in 54, 284
Gauss-Jordan elimination 19
MATLAB mldivide ‘/’ 53, 56
partial pivoting 20, 21
solution of triangular systems by substitution 17, 18

Gaussian (normal) distribution 331–332
MATLAB normrnd 334
MATLAB randn 334
multivariate distribution 337

Gaussian quadrature 163–166
accuracy 166
Legendre polynomials 166
Lobatto quadrature 166
MATLAB quadl 166

orthogonal functions 164
orthogonal polynomials 165
scalar product 164
singularities 166
square integrable functions 164
weighted integrals 164

Genetic algorithm 362–364
Gershgorin’s theorem 112
Gibbs oscillations 437
GMRES method 287–288
Gouy-Chapman theory 313
Gradient optimization methods 213–223
Gradient vector 212
Gram-Schmidt orthogonalization 28

Hamilton-Jacobi-Bellman (HJB) equation 249
numerical solution by finite differences 275

Heaviside step function 232
Hermetian

conjugate 119
matrix 119

Hessian matrix
approximation by BFGS formula 224
normal mode analysis 134
optimization 212, 223

Homotopy 88, 203
Householder transformation (reflection) 129
Hyperbolic PDEs 278

Identity matrix 37
Index of DAE system 198
Initial value problems (IVPs) 154–208

arc length continuation 203
Differential Algebraic Equation (DAE) systems

195–202
consistent initial conditions 198
index 198
mass matrix 195
MATLAB ode15s 198
standard form 195

Example. dynamic simulation of CSTR with two
reactions 181–183

Example. dynamics on the 2-D circle 199
Example. heterogeneous catalysis in a packed bed

reactor 199–202
Ordinary Differential Equation (ODE) systems

standard form 155
time-marching algorithms 176–184; A-stable

methods 188; absolute stability 187;
Backward Difference Formula (BDF) methods
179, 195–198; backward (implicit) Euler
method (see also Euler integration method)
176; Crank-Nicholson method 176; error
analysis; local errors 186; global error 187;
order of accuracy 187; rejection properties
190

forward (explicit) Euler method (see also Euler
integration method) 177; explicit methods
176; implicit methods 176; MATLAB ODE
solvers 181–183; multi-step methods 178;
MATLAB ode15s 182, 208

numerical stability 187, 188; predictor-corrector
methods 180; Runge-Kutta method, 2nd order

Index 469

(RK 2) 178; Runge-Kutta method, 4th order
(RK 4) 177; Runge-Kutta-Fehlberg method
(RKF 45) 178; MATLAB ode45 182, 206

single-step methods 176; stiff system algorithms
180, 182, 192; stiff decay 192; symplectic
methods 194; time step restrictions 190–191;
velocity Verlet method 195

Partial Differential Equation (PDE) systems
Example. dynamic simulation of a tubular

chemical reactor 282
stiffness 191
stochastic PDEs 358–360

state vector 155
Stochastic Differential Equations (SDEs) (see also

Stochastic simulation) 342–353
explicit Euler SDE method 343
Mil’shtein SDE method 346

Integration
Initial value problems (IVPs) (see also Initial value

problems) 155
MATLAB quad 163
MATLAB trapz 140
Monte Carlo method (see also Monte Carlo) 168,

360–361
numerical (see also Quadrature) 162
orthogonal functions 164
scalar product 164
square integrable functions 164
weighted integrals 164

Interpolation
Hermite method 160
Lagrange method 157
MATLAB interp1 100, 161
Newton method 157
polynomial methods 156–161
support points 156

Iterative linear solvers
Conjugate Gradient (CG) method (see also

Conjugate Gradient (CG) method) 286–287
Gauss-Seidel method 285–286
Generalized Minimum RESidual (GMRES) method

287–288
Jacobi method 114, 285–286
Krylov subspace 287
MATLAB bicg 287
MATLAB bicgstab 287
MATLAB gmres 287
MATLAB pcg 285
preconditioners (see Preconditioner matrix)

288–291
Successive Over-Relaxation (SOR) method

285
Symmetric SOR (SSOR) method 286
use for BVPs of high dimension 282–294

Itô-type SDE 343
Itô’s lemma 345

Jacobi method 114, 285
Jacobian matrix 73

approximating by Broyden’s method 77
dynamic stability 172
estimating by finite differences 77

Joint probability 320

Jordan form 118
of a normal matrix 121

Karush-Kuhn-Tucker (KKT) conditions 238
Kroenecker delta 5
Krylov subspace 287

Lagrange multiplier 234
Lagrange’s equation of motion 136
Lagrangian function

classical mechanics 136
optimization 234

Landau free energy model 358
Langevin equation 340, 343
Lennard-Jones interaction model 368
Levenberg-Marquardt method 389
Line searches 216–217

backtrack (Armijo) line search 216
strong line search 216
weak line search 216

Linear algebraic systems 1–57
as linear transformation 23
BVPs of high dimension 282–294
dimension theorem 31
Example. 1-D laminar flow of Newtonian fluid

47–54
Example. modeling a separation system 45–46
existence of solution 30, 110, 143
least-squares approximation solution 145
MATLAB mldivide ‘/’ 53, 56
null space, kernel 29, 144
range 30, 144
solution by Gaussian elimination (see also

Gaussian elimination) 10–23, 284
solution by iterative methods (see also Iterative

linear solvers) 285–291
solution by SVD 143
uniqueness of solution 30, 110, 143

LU factorization 38
incomplete LU factorization 290
MATLAB lu 57
MATLAB luinc 291
use in calculating matrix inverse 37

Macosko-Miller method 322
Markov chain 354
Markov process 353
Mass matrix

classical mechanics 136
of DAE system 195

MATLAB commands
adaptmesh 310
bicg 287
bicgstab 287
binocdf 330
binofit 330
binoinv 330
binopdf 330
binornd 330
binostat 330
chol 43, 57
cholinc 291
cond 113

470 Index

MATLAB commands (cont.)
condest 113
cputime 60
dblquad 167
delaunay 303
delaunayn 303
det 57
diag 290
eig 123, 149
eigs 124, 149
fft 445–446
fft2 451–452
fftn 451–452
fmincon 242–243
fminsearch 213
fminunc 228–230
fsolve 83, 98
fzero 70, 99
gmres 287
ifft 445–446
ifft2 451–452
ifftn 451–452
initmesh 302
interp1 100, 161
jigglemesh 303
lu 57
luinc 291
matfun 57
mean 364
mldivide ‘/’ 53, 56
nlinfit 400
nlparci 401
nlpredci 401
norm 113
normest 113
norminv 397
normrnd 334
ode15i 208
ode15s 182, 198, 208, 282
ode23s 208, 282
ode23tb 208
ode45 182, 206
odephas2 208
odephas3 208
odeplot 208
odeprint 208
odeset 208
optimset 84, 98, 228
pcg 223, 285
pdegplot 302
pdemesh 302
pdenonlin 310
pdepe 294
pdeplot 303
pdetool 301–303, 309–311
poisscdf 335
poissfit 335
poissinv 335
poisspdf 335
poissrnd 335
poissstat 335
qr 131
quad 163

quadl 166
rand 168, 327
randn 334
refinemesh 303
regress 400
roots 148
schur 119
spalloc 52, 56
sparfun 57
spdiags 53
spy 53
std 364
svd 146, 149
tinv 397
trapz 140, 163
tril 285
triplequad 167
triplot 303
triu 285
var 364
voronoi 303
voronoin 303

Matrix
addition 8
banded 51
Cholesky factorization (see also Cholesky

factorization) 42
complex 10
condition number (see also Condition number) 113
covariance matrix 337
determinant (see also Determinant) 32
diagonal dominance 115
diagonalizable matrix 118
dimension 8
eigenvalue (see also Eigenvalue analysis) 104
exponential function 169
Hermitian conjugate 119
Hermitian matrix 119
Hessenberg matrix 132
Hessian (see also Hessian matrix) 134, 212, 223
inverse (see also Matrix inverse) 36
irreducible matrix 116
Jacobian (see also Jacobian matrix) 73, 172
Jordan form 118
Jordan normal form 121
kernel (null space) 29, 144
list of available functions with MATLAB matfun

57
LU factorization (see also LU factorization) 38, 57
multiplication 26
multiplication by scalar 8
multiplication by vector 8, 9
norm (see also Norm) 44, 113
normal matrix (see also Normal matrix) 119
null space (kernel) 29, 141
orthogonal 105, 119
partitioned matrix 45
positive-definite 42, 122
preconditioner (see also Preconditioner matrix)

288–291
principal diagonal 10
QR factorization (see also QR factorization) 130
range 30, 144

Index 471

rank 44, 142
real, symmetric matrix 10, 119
Schur decomposition 119
similar matrices 118
Singular Value Decomposition (SVD) (see also

Singular Value Decomposition) 141–148
sparse (see also Sparse matrix) 50, 51, 52, 53
spectral radius 113
square matrix 8
submatrix 44
symmetric 10, 119
trace 110
transpose 9
tridiagonal 50
unitary matrix 119

Matrix inverse
calculation by Cramer’s rule 36
definition 36
pseudo (generalized) inverse 145
numerical calculation 37

MCMC (Markov Chain Monte Carlo) simulation (see
Monte Carlo)

Mean
MATLAB mean 364
of a random variable (see also Expectation) 322

Metric
for vector space 6

Metropolis Monte Carlo method 353–357
Michaelis-Menten kinetics 58
Monte Carlo

Bayesian Markov Chain Monte Carlo (MCMC)
simulation 403–411, 419–421

Example. Monte Carlo simulation of 2-D Ising
lattice 356–357

integration method 168, 360–361
kinetic Monte Carlo 369
Markov chain 354
Markov process 353
Metropolis algorithm 353–357

Newton’s method
for interpolation 157
for optimization (see also Optimization) 223–227

Broyden-Fletcher-Goldfarb-Shanno (BFGS)
formula 224

Newton line search method 223–225
Newton trust-region method 225–227

for solving nonlinear algebraic systems
Broyden’s method 77
demonstrated performance 74–76
finding “false” solutions 80
quadratic convergence 69
quasi-Newton method 77
reduced-step line search 79, 80
single equation systems 63; demonstrated

performance 64–67; Jacobian matrix 73;
MATLAB fzero 70, 99; MATLAB fsolve
83, 98; multiple equation systems 71, 72

trust-region Newton method 81
Nonlinear algebraic systems 61–99

arc length continuation 203
bifurcation point 94
complex solutions 70

Example. 1-D laminar flow of shear-thinning fluid
85–88

Example. multiple steady states in a nonisothermal
CSTR 204–206

Example. steady-state CSTR for polycondensation
89–94

Example. steady-state CSTR with two reactions
71–72, 85, 88–89

homotopy 88, 203
Jacobian matrix 73
solving a single equation

bracketing and bisection 70
MATLAB fzero 70, 99
solving by Newton’s method (see also Newton’s

method) 63
solving by secant method 69

solving multiple equations
MATLAB fsolve 83, 98
reduced-step line search 79, 80
solving by Newton’s method (see also Newton’s

method) 72
trust-region Newton method 81

Norm
MATLAB norm, normest 113
matrix 44, 113
vector 6

2-norm (length) 6
infinity norm 7
p-norm 6

Normal distribution (see also Gaussian distribution)
331–332

Normal matrix 119
eigenvalue properties 121–123

Normal mode analysis 134
Null

vector 5
space (kernel) 29, 144

Optimal control 245–251
Bellman function 248
closed loop problem 250
cost functional 246
dynamic programming 248–251
Hamilton-Jacobi-Bellman (HJB) equation 249

numerical solution by finite differences 275
horizon time 246
open loop method 247–248

Optimization 212–218
applied to parameter estimation 388–389,

417–419
augmented Lagrangian method 231–240
complementary condition 238
conjugate gradient (CG) method 218–223

MATLAB pcg 223, 285
performance for quadratic cost functions

220–223
constrained problems 231–245
cost function 212
deterministic local methods 212–251
discrete parameter optimization 361–364
dogleg method 225–227
equality constraints 232–235
Example. finding closest points on two ellipses 235

472 Index

Optimization (cont.)
Example. fitting enzyme kinetics to empirical data

230
Example. optimal control of 1-D system

250–251
Example. optimal steady-state design of CSTR

244–245
feasible point 236
global minimum search 361–364
gradient methods 213–223
gradient vector 212
inequality constraints 235–240
Karush-Kuhn-Tucker (KKT) conditions 238
line searches (see also Line searches) 216–217
local minimum 212
MATLAB fmincon 242–243
MATLAB fminsearch 213
MATLAB fminunc 228–230
MATLAB optimset 228
Newton line search method 223–225
Newton trust-region method 225–227
optimal control (see also Optimal control)

245–251
penalty method 232
search direction 214
Sequential Quadratic Programming (SQP)

240
simplex method 213
slack variables 239
steepest descent direction 214
steepest descent method 217
stochastic optimization 361–364

genetic algorithm 362–364
Particle Swarm Optimization (PSO) 367
simulated annealing 361–362

unconstrained problems 212–230
Orthogonal

basis set 27
Gram-Schmidt method 28

collocation 304
functions 164
matrix 105, 119
polynomials 165
vectors 6

Orthonormal
basis set 27

Gram-Schmidt method 28
vectors 6

Parabolic PDEs 279
Parameter estimation (see Bayesian statistics)

Example. fitting enzyme kinetics to empirical data
230

Partial Differential Equation (PDE) systems (see also
Boundary Value Problems)

characteristic lines 275–279
elliptic equations 278
from conservation principles (see also Balances)

258
hyperbolic equations 278
parabolic equations 279
Poisson equation 260
stochastic PDEs 358–360

Particle Swarm Optimization (PSO) 367
Peclet number 270

local Peclet number 272
tubular reactor definition 279

Permutation
matrix 41
parity 33

Poisson-Boltzmann equation 313
Poisson distribution 334–336

MATLAB poisscdf 335
MATLAB poissfit 335
MATLAB poissinv 335
MATLAB poisspdf 335
MATLAB poissrnd 335
MATLAB poissstat 335

Poisson equation 260
Polymer

Brownian dynamics 367
ideal chain model 366

Polynomial
approximation by Taylor series expansion 62
calculating roots by eigenvalue analysis 148

MATLAB roots 148
characteristic polynomial of a matrix 106
interpolation (see also Interpolation) 156–161
Legendre polynomials 166
orthogonal polynomials 165

Preconditioner matrix 288–291
definition 289
incomplete Cholesky factorization 290
incomplete LU factorization 290
Jacobi preconditioner 290
MATLAB cholinc 291
MATLAB luinc 291

Principal Component Analysis (PCA) 412–414
Probability theory 317–338

Bayes’ theorem (see also Bayesian statistics) 321
Bernoulli trials 327–328
binomial distribution 329–330
Boltzmann distribution 337
central limit theorem 333
conditional expectation 323
conditional probability 321
continuous probability distribution 326
covariance 336
covariance matrix 337
cumulative probability distribution 327
discrete probability distribution 325
expectation 322
Gaussian distribution (see also Gaussian (normal)

distribution) 331–332
independent events 321
joint probability 320
normal distribution (see also Gaussian (normal)

distribution) 331–332
Poisson distribution 334–336
probability as statement of belief 382
probability distributions 325–338
probability in frequentist view 319, 381
probability of an event 319
random variable 322
random walks 328–329
Stirling’s approximation 331

Index 473

QR factorization 130
Hessenberg matrix 132
Householder transformation (reflection) 129
iterative use for eigenvalue analysis 131
MATLAB qr 131

Quadrature (numerical integration) 162
dynamic simulation (see also Initial value

problems) 155
Gaussian (see also Quadrature) 163–166
Lobatto 166
MATLAB dblquad 167
MATLAB quad 163
MATLAB quadl 166
MATLAB trapz 140, 163
MATLAB triplequad 167
multidimensional integrals 167–169
Monte Carlo integration 168
Newton-Cotes integration 162

3/8 rule 162
Simpson’s rule 162
Trapezoid rule 162; composite rule

162
Quantum mechanics 137–141

use of eigenvalue analysis 138
Quasi-Steady State Approximation (QSSA)

183

Random
number generators

MATLAB normrnd 334
MATLAB rand 168, 327
MATLAB randn 334

variable 322
conditional expectation 323
covariance 336
expectation 322
MATLAB mean 364
MATLAB std 364
MATLAB var 364
standard deviation 327
variance 327

vector
covariance matrix 337

walks 328–329
Rank

of matrix 44, 142
Regression (see Bayesian statistics)
Residual function 304

Scalars 3
complex conjugate 3
complex modulus 3

Scattering theory 452–458
lattice vectors 457
powder spectrum 458
reciprocal lattice vectors 458
Small Angle X-ray Scattering (SAXS) 458
structure factor 455
Wide Angle X-ray Scattering (WAXS)

458
Schrödinger equation 138
Schur decomposition 119

MATLAB schur 119

Search direction 214
Secant condition 224
Sequential Quadratic Programming (SQP)

240
Shape function 305
Similarity transformation 118

similar matrices 118
Simplex optimization method 213
Simulated annealing 361–362

applied to parameter estimation 417–419
Singular Value Decomposition (SVD) 141–148

existence and uniqueness of linear systems 143
least-squares approximate solution of linear system

145
left singular vectors 142
MATLAB svd 146, 149
pseudo (generalized) matrix inverse 145
right singular vectors 142
rank of matrix 142
singular values 141

Slack variables 239
Span

of set of vectors 29
Sparse matrix

allocation with MATLAB spalloc 52, 56
banded 51
BVPs of high dimension 282–294
defined 50
fill-in during Gaussian elimination 54
list of available functions with MATLAB sparfun

57
storage format 51
viewing structure with MATLAB spy 53

Spectral decomposition 122
Stability

dynamic 170
eigenvalue analysis 171
manifolds 171

Example. stability of steady states of nonlinear
dynamic system 172–175

numerical stability of ODE-IVP methods
A-stability 188
absolute stability 187
error rejection 190
stiff stability 192
time step restrictions 190–191

Standard deviation 327
MATLAB std 364

Statistical mechanics
Boltzmann distribution 337
Example. Monte Carlo simulation of 2-D Ising

lattice 356–357
Field theory (see also Field theory) 358–360
Lennard-Jones interaction model 368
Maxwell velocity distribution 338
statistical field theory 358–360

Statistics (see Bayesian statistics)
Steepest descent

direction 214
optimization method 217

Stiff dynamical systems 180
numerical simulation 192

Stirling’s approximation 331

474 Index

Stochastic simulation
Boltzmann distribution 337
Brownian dynamics (see also Brownian dynamics)

327
Diffusion Limited Aggregation (DLA) 366
Example. Monte Carlo simulation of 2-D Ising

lattice 356–357
Example. stochastic modeling of polymer chain

length distribution 318–321
Example. stochastic modeling of polymer gelation

321–325
kinetic Monte Carlo 369
Markov chain 354
Markov process 353
Metropolis Monte Carlo method 353–357

condition of detailed balance 355
optimization 361–364

genetic algorithm 362–364
Particle Swarm Optimization (PSO) 367
simulated annealing 361–362

probability theory (see also Probability theory)
317–338

random walks 328–329
stochastic calculus 343–347

Chapman-Kolmogorov equation 349
Fokker-Planck equation (see also Fokker-Planck

equation) 347–351
Forward Kolmogorov equation 350
Itô’s lemma 345

Stochastic Differential Equations (SDEs)
342–353

explicit Euler SDE method 343
Itô-type SDE 343
Mil’shtein SDE method 346

stochastic integral 343
Stochastic Partial Differential Equations 358–360
stochastic system 317
transition probability 349
Wiener process 341–342

Stokes-Einstein relation 352
Successive Over-Relaxation (SOR) method 285

Symmetric SOR (SSOR) method 286

Taylor series 62
Thiele modulus 266

Trust radius 225
Trust-region Newton optimization method 225–227

Variance 327
MATLAB var 364

Vector
addition 5
column vector 4
complex vectors 7

complex conjugate 7
dot product 7

dot (scalar, inner) product 5, 7
length 6
linear independence 26
metric 6
norm 6, 7
null vector 5, 29
orthogonal vectors 6, 27
orthonormal vectors 6, 27
row vector 4
set of complex vectors 7
set of real vectors 4

Vector space
basis set 26
basis set expansion 27
definition, required properties 24
Krylov subspace 287
linear independence 26
linear transformation 24
orthogonal basis 27
orthonormal basis 27
span 29
subspace 29

von Neumann boundary condition 265
Voronoi polyhedra 303

MATLAB voronoi 303
MATLAB voronoin 303

Weight function 304
Weighted residual methods 304–305

collocation method 304
orthogonal collocation 304

Galerkin method 304
least-squares method 304
residual function 304

	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface
	1 Linear algebra
	Linear systems of algebraic equations
	Review of scalar, vector, and matrix operations
	Scalars, real and complex
	Vector notation and operations
	Matrix dimension
	Multiplication of an M × N matrix A by a scalar c
	Addition of an M × N matrix A with an equal-sized M × N matrix B
	Multiplication of a square N × N matrix A with an N-dimensional vector v
	Multiplication of an M × N matrix A with an N-dimensional vector v
	Matrix transposition
	Complex-valued matrices
	Vectors as matrices

	Elimination methods for solving linear systems
	Gaussian elimination
	Elementary row operations
	Gaussian elimination to place Ax = b in upper triangular form
	Solving triangular systems by substitution
	Basic algorithm for solving Ax = b by Gaussian elimination
	Gauss–Jordan elimination
	Partial pivoting

	Existence and uniqueness of solutions
	Interpreting Ax = b as a linear transformation
	Multiplication of matrices
	Vector spaces and basis sets
	Gram–Schmidt orthogonalization
	Subspaces and the span of a set of vectors
	The null space and the existence/uniqueness of solutions

	The determinant
	Expansion by minors
	The determinant of 2 × 2 and 3 × 3 matrices
	General properties of the determinant function
	Computing the determinant value

	Matrix inversion
	Matrix factorization
	LU decomposition
	Cholesky decomposition

	Matrix norm and rank
	Submatrices and matrix partitions
	Example. Modeling a separation system
	Sparse and banded matrices
	Example. Solving a boundary value problem from fluid mechanics
	Banded and sparse matrices
	Treatment of sparse, banded matrices in MATLAB
	Solving the 1-D fluid flow problem in MATLAB
	Fill-in (why Gaussian elimination is sometimes impractical)

	MATLAB summary
	Problems

	2 Nonlinear algebraic systems
	Existence and uniqueness of solutions to a nonlinear algebraic equation
	Iterative methods and the use of Taylor series
	Newton’s method for a single equation
	Performance of Newton’s method for a single equation
	Formal convergence properties of Newton’s method for a single equation

	The secant method
	Bracketing and bisection methods
	Finding complex solutions
	Systems of multiple nonlinear algebraic equations
	Newton’s method for multiple nonlinear equations
	Performance of Newton’s method for an example system of two equations

	Estimating the Jacobian and quasi-Newton methods
	Robust reduced-step Newton method
	The backtracking weak line search method
	Performance of the reduced-step Newton method for an example system of two equations

	The trust-region Newton method
	Solving nonlinear algebraic systems in MATLAB
	Example. 1-D laminar ﬂow of a shear-thinning polymer melt
	Homotopy
	Example. Steady-state modeling of a condensation polymerization reactor
	Rate equations for polycondensation
	Steady-state model of a stirred-tank polycondensation reactor
	Effect of Da and mass transfer upon polymer chain length

	Bifurcation analysis
	Example. Bifurcation points of a simple quadratic equation
	Numerical calculation of bifurcation points

	MATLAB summary
	Problems

	3 Matrix eigenvalue analysis
	Orthogonal matrices
	A specific example of an orthogonal matrix
	Eigenvalues and eigenvectors defined
	Eigenvalues/eigenvectors of a 2 × 2 real matrix
	A is triangular
	A is real, symmetric (AT = A)
	Analytical computation of eigenvectors

	Multiplicity and formulas for the trace and determinant
	Eigenvalues and the existence/uniqueness properties of linear systems
	Estimating eigenvalues; Gershgorin’s theorem
	Matrix norm, spectral radius, and condition number

	Applying Gershgorin’s theorem to study the convergence of iterative linear solvers
	Irreducible matrices

	Eigenvector matrix decomposition and basis sets
	Eigenvector properties of a general N × N complex matrix
	Special eigenvector properties of normal matrices

	Numerical calculation of eigenvalues and eigenvectors in MATLAB
	Computing all eigenvalues and eigenvectors with eig
	Computing extremal eigenvalues and their eigenvectors with eigs

	Computing extremal eigenvalues
	Convergence of power method with a degenerate leading eigenvalue
	Finding the next largest eigenvalues of a positive-semidefinite matrix
	Inverse in.ation and shift operations to find other eigenvalues

	The QR method for computing all eigenvalues
	QR decomposition of a real matrix
	Iterative QR method for computing all eigenvalues
	Improving the efﬁciency of the QR method
	Example. QR method for a real 4 × 4 matrix

	Normal mode analysis
	Relaxing the assumption of equal masses
	The generalized eigenvalue problem

	Eigenvalue problems in quantum mechanics
	Numerical solution of a differential equation eigenvalue problem

	Singular value decomposition (SVD)
	SVD analysis and the existence/uniqueness properties of linear systems
	Least-squares approximate solutions
	SVD in MATLAB

	Computing the roots of a polynomial
	MATLAB summary
	Problems

	4 Initial value problems
	Initial value problems of ordinary differential equations (ODE-IVPs)
	Polynomial interpolation
	Lagrange interpolation
	Newton interpolation
	Hermite interpolation
	Other types of interpolation

	Newton–Cotes integration
	Use of trapz and quad

	Gaussian quadrature
	Preliminary definitions
	Orthogonal polynomials
	Gaussian quadrature
	Gaussian quadrature with w(x) = 1 and the use of quadl

	Multidimensional integrals
	Monte Carlo integration

	Linear ODE systems and dynamic stability
	Stability of the steady state of a linear system
	Stability of a steady state of a nonlinear system
	Example. Stability of steady states for nonlinear ODE systems

	Overview of ODE-IVP solvers in MATLAB
	Time-marching ODE-IVP solvers
	Explicit single-step methods
	Implicit multistep methods
	Stiffness and the choice of integration method
	ODE solvers in MATLAB
	Example. Stiffness and the QSSA in chemical kinetics

	Accuracy and stability of single-step methods
	Numerical accuracy and the order of an integration method
	Absolute stability of an integration method
	Time step restrictions for stiff systems
	Error rejection
	Stiff systems from discretized PDEs

	Stiff stability of BDF methods
	Symplectic methods for classical mechanics
	Differential-algebraic equation (DAE) systems
	BDF method for DAE systems of index one
	Example. Dynamics on the 2-D unit circle
	Example. Heterogeneous catalysis in a packed bed reactor

	Parametric continuation
	Example. Multiple steady states in a nonisothermal CSTR

	MATLAB summary
	Problems

	5 Numerical optimization
	Local methods for unconstrained optimization problems
	The simplex method
	Gradient methods
	Strong and weak line searches
	Choosing the search direction
	A gradient minimizer routine
	Conjugate gradient method applied to quadratic cost functions

	Newton line search methods
	Trust-region Newton method
	The dogleg method

	Newton methods for large problems
	Unconstrained minimizer fminunc in MATLAB
	Example. A simple cost function

	Example. Fitting a kinetic rate law to time-dependent data
	Lagrangian methods for constrained optimization
	Optimization with equality constraints
	Example. Finding the closest points on two ellipses
	Treatment of inequality constraints
	Sequential quadratic programming (SQP)

	Constrained minimizer fmincon in MATLAB
	The fmincon constrained minimizer
	Example. Finding the closest points on two ellipses
	Example. Optimal steady-state design of a CSTR

	Optimal control
	An open-loop optimal control routine
	Dynamic programming
	Example. A simple 1-D optimal control problem

	MATLAB summary
	Problems

	6 Boundary value problems
	BVPs from conservation principles
	Real-space vs. function-space BVP methods
	The finite difference method applied to a 2-D BVP
	Finite difference approximations
	Finite difference solution of a Poisson BVP

	Extending the ﬁnite difference method
	Chemical reaction and diffusion in a spherical catalyst pellet
	Dimensionless formulation
	Finite differences on a nonCartesian, nonuniform grid
	Treatment of Dirichlet and von Neumann boundary conditions
	Definition of the effectiveness factor
	Numerical solution in MATLAB

	Finite differences for a convection/diffusion equation
	Central difference scheme (CDS)
	Upwind difference scheme (UDS)
	Why does upwind differencing work?
	Numerical solution of the HJB equation of optimal control
	Characteristics and types of PDEs

	Modeling a tubular chemical reactor with dispersion; treating multiple fields
	Solution by upwind finite differences
	Time-dependent simulation

	Numerical issues for discretized PDEs with more than two spatial dimensions
	The Jacobi, Gauss–Seidel, and successive over-relaxation (SOR) methods
	The conjugate gradient method for positive-deﬁnite matrices
	The generalized minimum residual (GMRES) Krylov subspace method
	The use of preconditioners
	Example. 3-D heat transfer in a stove top element

	The 1-D parabolic and elliptic solver pdepe
	Finite differences in complex geometries
	The finite volume method
	The finite element method (FEM)
	Automatic mesh generation
	Weighted-residual methods and the Galerkin formulation of FEM
	Solving Poisson’s equation in two dimensions with the FEM
	Convection terms in FEM

	FEM in MATLAB
	Numerical solution of a 2-D BVP using the MATLAB PDE toolkit

	Further study in the numerical solution of BVPs
	MATLAB summary
	Problems

	7 Probability theory and stochastic simulation
	The theory of probability
	Condensation polymers
	Chain length distribution in linear condensation polymers; joint and conditional probabilities
	Gelation of multifunctional monomers (more on conditional probabilities and mathematical expectation)

	Important probability distributions
	Bernoulli trials
	The random walk problem
	The binomial distribution
	The Gaussian (normal) distribution
	The central limit theorem of statistics
	The Gaussian distribution with nonzero mean
	The Poisson distribution

	Random vectors and multivariate distributions
	The Boltzmann and Maxwell distributions

	Brownian dynamics and stochastic differential equations (SDEs)
	The Langevin equation
	The Wiener process
	Stochastic Differential Equations (SDEs)
	Itos stochastic calculus
	Example. Stochastic calculus in quantitative finance
	The Fokker–Planck equation
	The Einstein relation
	General formulation of SDEs; Brownian motion in multiple dimensions

	Markov chains and processes; Monte Carlo methods
	Markov chains
	Monte Carlo simulation in statistical mechanics
	Example. Monte Carlo simulation of a 2-D Ising lattice
	Field theory and stochastic PDEs
	Monte Carlo integration
	Simulated annealing

	Genetic programming
	MATLAB summary
	Problems

	8 Bayesian statistics and parameter estimation
	General problem formulation
	Example. Fitting kinetic parameters of a chemical reaction
	Fitting the rate law to steady-state measurements of a CSTR
	Fitting the rate law to initial rate measurements in a batch reactor
	Transforming the batch reactor data to obtain a linear regression problem
	Fitting the rate law to the entire dynamic proﬁle of a batch reactor run
	Fitting the rate law from multiple sources

	Single-response linear regression
	Linear least-squares regression
	Solving the least-squares linear system
	Example. Least-squares .tting of rate law parameters to transformed batch data
	Example. Comparing protein expression data for two bacterial strains

	The Bayesian view of statistical inference
	Bayes’ theorem
	Bayesian view of single-response regression
	Some general considerations about the selection of a prior

	The least-squares method reconsidered
	Numerical treatment of nonlinear least-squares problems

	Selecting a prior for single-response data
	Noninformative prior for theta
	Non informative prior for sigma
	The posterior density for single-response data

	Confidence intervals from the approximate posterior density
	Confidence interval for the mean of a population and the t-distribution
	Confidence intervals for model parameters
	Confidence intervals on the model predictions
	Least-squares fitting and confidence interval generation in MATLAB
	Linear least-squares calculations in MATLAB
	Nonlinear least-squares calculations in MATLAB
	Example. Fitting the rate constant from the full curve of concentration of C vs. time for a batch reactor experiment

	MCMC techniques in Bayesian analysis
	MCMC computation of posterior predictions
	Example. Protein expression data for bacterial strains
	MCMC computation of marginal posterior densities
	Computing highest probability density (HPD) regions from marginal posterior distributions
	Example. Batch reactor chemical reaction data

	Applying eigenvalue analysis to experimental design
	Example. Determining the number of additional experiments necessary for the protein expression data

	Bayesian multiresponse regression
	Reduction of the multiresponse posterior density to the previous result for single-response data
	Numerically computing the parameter estimate
	Example. Fitting the rate constant from multiresponse dynamic batch reactor data
	MCMC simulation with the multiresponse marginal posterior density

	Analysis of composite data sets
	Example. Numerical analysis of composite data sets, applied to the problem of estimating the rate constant of a reaction from multiple reactor data sets

	Bayesian testing and model criticism
	Null hypothesis testing
	Model criticism and selection
	Schwartz’s Bayesian information criterion (BIC)

	Further reading
	MATLAB summary
	Problems

	9 Fourier analysis
	Fourier series and transforms in one dimension
	Gibbs oscillations
	Exponential form of the Fourier series
	The Fourier transform
	The discrete Fourier transform
	The fast Fourier transform (FFT)
	Special properties of the Fourier transform of a real function and the power spectrum

	1-D Fourier transforms in MATLAB
	Aliasing

	Convolution and correlation
	Convolution of two signals
	Correlation of two signals

	Fourier transforms in multiple dimensions
	Convolution and correlation
	The discrete d-dimensional Fourier transform
	FFT in multiple dimensions in MATLAB

	Scattering theory
	Applying Fourier analysis
	Scattering peaks from samples with periodic structure

	MATLAB summary
	Problems

	References
	Index

